[en] While climate models project that Greenland ice sheet (GrIS) melt will continue to accelerate with climate change, models exhibit limitations in capturing observed connections between GrIS melt and changes in high-latitude atmospheric circulation. Here we impose observed Arctic winds in a fully-coupled climate model with fixed anthropogenic forcing to quantify the influence of the rotational component of large-scale atmospheric circulation variability over the Arctic on the temperature field and the surface mass/energy balances through adiabatic processes. We show that recent changes involving mid-to-upper-tropospheric anticyclonic wind anomalies – linked with tropical forcing – explain half of the observed Greenland surface warming and ice loss acceleration since 1990, suggesting a pathway for large-scale winds to potentially enhance sea-level rise by ~0.2 mm/year per decade. We further reveal fingerprints of this observed teleconnection in paleo-reanalyses spanning the past 400 years, which heightens concern about model limitations to capture wind-driven adiabatic processes associated with GrIS melt.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Topal, D.
Ding, Q.
Ballinger, T.
Hanna, E.
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Li, Z.
Pieczka, I.
Language :
English
Title :
Discrepancies between observations and climate models of large-scale wind-driven Greenland melt influence sea-level rise projections
Publication date :
14 November 2022
Journal title :
Nature Communications
eISSN :
2041-1723
Publisher :
Nature Publishing Group, London, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020). DOI: 10.1038/s41586-020-2742-6
Fettweis, X. et al. GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere 14, 3935–3958 (2020). DOI: 10.5194/tc-14-3935-2020
Hanna, E. et al. Mass balace of the ice sheets and glaciers – progress since AR5 and challenges. Earth Sci. Rev. 201, 102976 (2020). DOI: 10.1016/j.earscirev.2019.102976
Hofer, S. et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nat. Commun. 11, 6289 (2020). DOI: 10.1038/s41467-020-20011-8
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V.). (Cambridge University Press, 2021).
The IMBIE Team, Shepherd, A. et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020). DOI: 10.1038/s41586-019-1855-2
Slater, T., Hogg, A. E. & Mottram, R. Ice-sheet losses track high-end sea-level rise projections. Nat. Clim. Chang. 10, 879–881 (2020). DOI: 10.1038/s41558-020-0893-y
Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J. & van den Broeke, M. R. A 21st century warming threshold for sustained Greenland ice sheet mass loss. Geophys. Res. Lett. 48, e2020GL090471 (2021). DOI: 10.1029/2020GL090471
Fettweis, X. et al. Brief communication: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 7, 241–248 (2013). DOI: 10.5194/tc-7-241-2013
Ballinger, T. J. et al. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns. Clim. Dyn. 50, 83–100 (2018). DOI: 10.1007/s00382-017-3583-3
Delhasse, A., Fettweis, X., Kittel, C., Amory, C. & Agosta, C. Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere 12, 3409–3418 (2018). DOI: 10.5194/tc-12-3409-2018
Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl Acad. Sci. USA 116, 1934–1939 (2019). DOI: 10.1073/pnas.1806562116
Tedesco, M. & Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. Cryosphere 14, 1209–1223 (2020). DOI: 10.5194/tc-14-1209-2020
Hanna, E. et al. Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41, E1336–E1352 (2021). DOI: 10.1002/joc.6771
Topál, D. et al. An internal atmospheric process determining summertime Arctic Sea ice melting in the next three decades: lessons learned from five large ensembles and multiple CMIP5 climate simulations. J. Clim. 33, 7431–7454 (2020). DOI: 10.1175/JCLI-D-19-0803.1
Hanna, E., Fettweis, X. & Hall, R. J. Brief communication: recent changes in summer Greenland blocking captured by none of the CMIP5 models. Cryosphere 12, 3287–3292 (2018). DOI: 10.5194/tc-12-3287-2018
Ballinger, T. et al. Anomalous blocking over Greenland preceded the 2013 extreme early melt of local sea ice. Ann. Glaciol. 59, 181–190 (2018). DOI: 10.1017/aog.2017.30
Delhasse, A., Hanna, E., Kittel, C. & Fettweis, X. Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. Int. J. Climatol. 41, 2589–2596 (2021). DOI: 10.1002/joc.6977
Luo, R. et al. Summertime atmosphere–sea ice coupling in the Arctic simulated by CMIP5/6 models: Importance of large-scale circulation. Clim. Dyn. 56, 1467–1485 (2021). DOI: 10.1007/s00382-020-05543-5
Bennartz, R. et al. 2012 July Greenland melt extent enhanced by low-level liquid clouds. Nature 496, 83–86 (2013). DOI: 10.1038/nature12002
Tedesco, M. et al. The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100). Cryosphere 10, 477–496 (2016). DOI: 10.5194/tc-10-477-2016
Van Tricht, K. et al. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7, 10266 (2016). DOI: 10.1038/ncomms10266
Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, 1–12 (2020). DOI: 10.1029/2019GL085782
Hofer, S. et al. Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nat. Clim. Chang. 9, 523–528 (2019). DOI: 10.1038/s41558-019-0507-8
Hanna, E. et al. The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol. 33, 862–880 (2013). DOI: 10.1002/joc.3475
Sherman, P., Tziperman, E., Deser, C. & McElroy, M. Historical and future roles of internal atmospheric variability in modulating summertime Greenland Ice Sheet melt. Geophys. Res. Lett. 47, e2019GL086913 (2020). DOI: 10.1029/2019GL086913
Ding, Q. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Chang. 7, 289–295 (2017). DOI: 10.1038/nclimate3241
Hermann, M., Papritz, L. & Wernli, H. A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017. Weather Clim. Dynam. 1, 497–518 (2020). DOI: 10.5194/wcd-1-497-2020
Huang, Y. et al. Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice. Commun. Earth Environ. 2, 38 (2021). DOI: 10.1038/s43247-021-00114-w
Noël, B., van de Berg, W. J., Lhermitte, S. & van den Broeke, M. R. Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv. 5, eaaw0123 (2019). DOI: 10.1126/sciadv.aaw0123
Hofer, S., Tedstone, A. J., Fettweis, X. & Bamber, J. L. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv. 3, e1700584 (2017). DOI: 10.1126/sciadv.1700584
Ding, Q. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014). DOI: 10.1038/nature13260
Hanna, E. et al. Greenland blocking index daily series 1851–2015: Analysis of changes in extremes and links with North Atlantic and UK climate variability and change. Int. J. Climatol. 38, 3546–3564 (2018). DOI: 10.1002/joc.5516
Baxter, I. et al. How tropical pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Clim. 32, 8583–8602 (2019). DOI: 10.1175/JCLI-D-18-0783.1
Ballinger, T. J. et al. The role of blocking circulation and emerging open water feedbacks on Greenland cold-season air temperature variability over the last century. Int. J. Climatol. 41, E2778–E2800 (2021). DOI: 10.1002/joc.6879
Kay, J. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015). DOI: 10.1175/BAMS-D-13-00255.1
Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017). DOI: 10.5194/tc-11-1015-2017
Fettweis, X., Tedesco, M., van den Broeke, M. & Ettema, J. Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere 5, 359–375 (2011). DOI: 10.5194/tc-5-359-2011
Delhasse, A. et al. Brief communication: evaluation of the near-surface climate in ERA5 over the Greenland Ice Sheet. Cryosphere 14, 957–965 (2020). DOI: 10.5194/tc-14-957-2020
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020). DOI: 10.1002/qj.3803
Hanna, E., Cropper, T. E., Hall, R. J. & Cappelen, J. Greenland blocking index 1851–2015: a regional climate change signal. Int. J. Climatol. 36, 4847–4861 (2016). DOI: 10.1002/joc.4673
Noël, B. et al. Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance. Cryosphere 14, 1425–1435 (2020). DOI: 10.5194/tc-14-1425-2020
Lenaerts, J. T. M., Medley, B., Broeke, M. R. & Wouters, B. Observing and modeling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019). DOI: 10.1029/2018RG000622
Kato, S. et al. Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product. J. Clim. 31, 4501–4527 (2018). DOI: 10.1175/JCLI-D-17-0523.1
Ablain, M. et al. Uncertainty in satellite estimate of global mean sea level changes, trend and acceleration. Earth Syst. Sci. Data. 2, 1–26 (2019).
Chen, X. et al. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Chang. 7, 492–495 (2017). DOI: 10.1038/nclimate3325
Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 116, 9239–9244 (2019). DOI: 10.1073/pnas.1904242116
Li, Z. et al. Recent upper Arctic Ocean warming expedited by summertime atmospheric processes. Nat. Commun. 13, 362 (2022). DOI: 10.1038/s41467-022-28047-8
Wood, M. et al. Ocean forcing drives glacier retreat in Greenland. Sci. Adv. 7, eaba7282 (2021). DOI: 10.1126/sciadv.aba7282
Rignot, E., Fenty, I., Menemenlis, D. & Xu, Y. Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol. 53, 257–266 (2012). DOI: 10.3189/2012AoG60A136
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008). DOI: 10.1038/ngeo316
Bonan, D. B. & Blanchard-Wrigglesworth, E. Nonstationary teleconnection between the Pacific Ocean and Arctic sea ice. Geophys. Res. Lett. 47, e2019GL085666 (2020). DOI: 10.1029/2019GL085666
Valler, V., Franke, J., Brugnara, Y. & Brönnimann, S. An updated global atmospheric paleo-reanalysis covering the last 400 years. Geosci. Data J. 00, 1–19 (2021).
Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 5, 475–480 (2015). DOI: 10.1038/nclimate2554
Tardif, R. et al. Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Clim. Past 15, 1251–1273 (2019). DOI: 10.5194/cp-15-1251-2019
Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014). DOI: 10.1007/s00382-013-1951-1
Hamlington, B. D. et al. The dominant global modes of recent internal sea level variability. J. Geophys Res. Oceans 124, 2750–2768 (2019). DOI: 10.1029/2018JC014635
Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012). DOI: 10.1029/2012GL053055
Shahi, S., Abermann, J., Heinrich, G., Prinz, R. & Schöner, W. Regional variability and trends of temperature inversions in Greenland. J. Clim. 33, 9391–9940 (2020). DOI: 10.1175/JCLI-D-19-0962.1
Caesar, L. et al. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021). DOI: 10.1038/s41561-021-00699-z
Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020). DOI: 10.1038/s41586-020-2591-3
Hawkings, J. R. et al. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nat. Geosci. 14, 496–502 (2021). DOI: 10.1038/s41561-021-00753-w
Ding, Q. & Wang, B. Circumglobal teleconnection in the northern hemisphere summer. J. Clim. 18, 3483–3505 (2005). DOI: 10.1175/JCLI3473.1
Ding, Q., Wang, B., Wallace, J. M. & Branstator, G. Tropical–extratropical teleconnections in boreal summer: observed interannual variability. J. Clim. 24, 1878–1896 (2011). DOI: 10.1175/2011JCLI3621.1
Zhu, J., Poulsen, C. J. & Otto-Bliesner, B. L. High climate sensitivity in CMIP6 model not supported by paleoclimate. Nat. Clim. Chang. 10, 378–379 (2020). DOI: 10.1038/s41558-020-0764-6
Gallée, H. & Schayes, G. Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 122, 671–685 (1994). DOI: 10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2
Amory, C. et al. Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica. Cryosphere 9, 1373–1383 (2015). DOI: 10.5194/tc-9-1373-2015
Fettweis, X. Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere 1, 21–40 (2007). DOI: 10.5194/tc-1-21-2007
Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), version 5 [global]. https://doi.org/10.7289/V5T72FNM. (2018).
Loeb, N. G. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Clim. 31, 895–918 (2018). DOI: 10.1175/JCLI-D-17-0208.1
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019). DOI: 10.5194/os-15-779-2019
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012). DOI: 10.1175/BAMS-D-11-00094.1
Rutt, I., Hagdorn, M., Hulton, N. & Payne, A. The Glimmer community ice sheet model. J. Geophys. Res. 114, F02004 (2009).
Konecky, B. L. et al. The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate. Earth Syst. Sci. Data 12, 2261–2288 (2020). DOI: 10.5194/essd-12-2261-2020
PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017). DOI: 10.1038/sdata.2017.88
Bretherton, C. S., Smith, C. & Wallace, J. M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 5, 541–560 (1992). DOI: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.