General Earth and Planetary Sciences; General Environmental Science
Abstract :
[en] AbstractMelting glacier ice surfaces host active microbial communities that enhance glacial melt, contribute to biogeochemical cycling, and nourish downstream ecosystems; but these communities remain poorly characterised. Over the coming decades, the forecast ‘peak melt’ of Earth’s glaciers necessitates an improvement in understanding the state and fate of supraglacial ecosystems to better predict the effects of climate change upon glacial surfaces and catchment biogeochemistry. Here we show a regionally consistent mean microbial abundance of 104 cells mL−1 in surface meltwaters from eight glaciers across Europe and North America, and two sites in western Greenland. Microbial abundance is correlated with suspended sediment concentration, but not with ice surface hydraulic properties. We forecast that release of these microbes from surfaces under a medium carbon emission scenario (RCP 4.5) will deliver 2.9 × 1022 cells yr−1, equivalent to 0.65 million tonnes yr−1 of cellular carbon, to downstream ecosystems over the next ~80 years.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Stevens, Ian T.
Irvine-Fynn, Tristram D. L.
Edwards, Arwyn
Mitchell, Andrew C.
Cook, Joseph M.
Porter, Philip R.
Holt, Tom O.
Huss, Matthias
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Moorman, Brian J.
Sattler, Birgit
Hodson, Andy J.
Language :
English
Title :
Spatially consistent microbial biomass and future cellular carbon release from melting Northern Hemisphere glacier surfaces
Publication date :
10 November 2022
Journal title :
Communications Earth and Environment
eISSN :
2662-4435
Publisher :
Springer Science and Business Media LLC
Volume :
3
Issue :
1
Peer reviewed :
Peer reviewed
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
Royal Geographical Society Aberystwyth University NERC - Natural Environment Research Council Royal Society Climate Change Consortium for Wales (C3W) EU INTERACT Higher Education Funding Council for Wales EU INTERACT Welsh Government and Higher Education Funding Council for Wales (HEFCW): See Cymru National Research Network Rolex Awards for Enterprise Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada Polar Continental Shelf Project
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Slater, T. et al. Review article: Earth’s ice imbalance. Cryosphere 15, 233–246 (2021).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Hotaling, S., Hood, E. Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections, and implications of a warming climate. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13766 (2017).
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. 114, 9770–9778 (2017).
Hopwood, M. J. et al. Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).
Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).
Hood, E., Fellman, J. B. & Spencer, R. G. M. Glacier loss impacts riverine organic carbon transport to the ocean. Geophys. Res. Lett. 47, e2020GL089804 (2020).
Singer, G. A. et al. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).
Brighenti, S. et al. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: a review. Sci. Total Environ. 675, 542–559 (2019).
Stibal, M., Sabacka, M. & Zarsky, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012).
Dancer, S. J., Shears, P. & Platt, D. J. Isolation and characterization of coliforms from glacial ice and water in Canada’s High Arctic. J. Appl. Microbiol. 82, 597–609 (1997).
Cameron, K. A., Müller, O., Stibal, M., Edwards, A. & Jacobsen, C. S. Glacial microbiota are hydrologically connected and temporally variable. Environ. Microbiol. 22, 3172–3187 (2020).
Holland, A. T. et al. Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet). Biogeosciences 16, 3283–3296 (2019).
Irvine-Fynn, T. D. L. et al. Storage and export of microbial biomass across the western Greenland Ice Sheet. Nat. Commun. 12, 3960 (2021).
Müller, F. & Keeler, C. M. Errors in short term ablation measurement on melting ice surfaces. Anglais 8, 91–105 (1969).
Cook, J., Edwards, A., Takeuchi, N. & Irvine-Fynn, T. Cryoconite:The dark biological secret of the cryosphere. Progr. Phys. Geogr.: Earth Environ. 40, 66–111 (2016).
Irvine-Fynn, T. D. L. & Edwards, A. A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry A 85, 3–7 (2014).
Edwards, A. & Cameron, K. A. in Psychrophiles: From Biodiversity to Biotechnology (ed Rosa Margesin) 57–81 (Springer International Publishing, 2017).
Christner, B. C. et al. Microbial processes in the weathering crust aquifer of a temperate glacier. Cryosphere 12, 3653–3669 (2018).
Koziol, K. A., Moggridge, H. L., Cook, J. M. & Hodson, A. J. Organic carbon fluxes of a glacier surface: a case study of Foxfonna, a small Arctic glacier. Earth Surf. Process. Landforms 44, 405–416 (2019).
Barker, J. D., Sharp, M. J., Fitzsimons, S. J. & Turner, R. J. Abundance and dynamics of dissolved organic carbon in glacier systems. Arctic, Antarct. Alpine Res. 38, 163–172 (2006).
Stevens, I. T. et al. Near‐surface hydraulic conductivity of northern hemisphere glaciers. Hydrol. Process. 32, 850–865 (2018).
Cook, J. M., Hodson, A. J. & Irvine-Fynn, T. D. L. Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. https://doi.org/10.1002/hyp.10602. (2015).
Žebre, M. et al. 200 years of equilibrium-line altitude variability across the European Alps (1901−2100). Clim. Dyn. 56, 1183–1201 (2021).
Noël, B. et al. Low elevation of Svalbard glaciers drives high mass loss variability. Nat. Commun. 11, 4597 (2020).
Noël, B. et al. Six decades of glacial mass loss in the Canadian Arctic Archipelago. J. Geophys. Res.-Earth 123, 1430–1449 (2018).
Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. 95, 6578–6583 (1998).
Amato, P. et al. Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol. Ecol. 59, 255–264 (2007).
Laurion, I., Demers, S. & Vezina, A. F. The microbial food web associated with the ice algal assemblage: biomass and bacterivory of nanoflagellate protozoans in Resolute Passage (High Canadian Arctic). Mar. Ecol. Prog. Ser. Oldendorf 120, 77–87 (1995).
Felip, M., Sattler, B., Psenner, R. & Catalan, J. Highly active microbial communities in the ice and snow cover of high mountain lakes. Appl. Environ. Microb. 61, 2394–2401 (1995).
Skidmore, M., Anderson, S. P., Sharp, M., Foght, J. & Lanoil, B. D. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microb. 71, 6986–6997 (2005).
Mindl, B. et al. Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a high Arctic glacier. FEMS Microbiol. Ecol. 59, 307–317 (2007).
Irvine-Fynn, T. D. L. et al. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ. Microbiol. 14, 2998–3012 (2012).
Stibal, M. et al. Microbial abundance in surface ice on the Greenland Ice Sheet. Front. Microbiol. 6 10.3389/fmicb.2015.00225 (2015).
Williamson, C. J. et al. Ice algal bloom development on the surface of the Greenland Ice Sheet. FEMS Microbiol. Ecol. 94 10.1093/femsec/fiy025 (2018).
Williamson, C. J. et al. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proc. Natl Acad. Sci. 117, 5694–5705 (2020).
Säwström, C., Mumford, P., Marshall, W., Hodson, A. & Laybourn-Parry, J. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol. 25, 591–596 (2002).
Anesio, A. M. et al. Carbon fluxes through bacterial communities on glacier surfaces. Ann. Glaciol. 51, 32–40 (2010).
Hodson, A. J. et al. Glacial Ecosystems. Ecol. Monogr. 78, 41–67 (2008).
Foreman, C. M., Sattler, B., Mikucki, J. A., Porazinska, D. L. & Priscu, J. C. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J. Geophys. Res. Biogeosci. 112, G04S32 (2007).
Wientjes, I. G. M. et al. Carbonaceous particles reveal that Late Holocene dust causes the dark region in the western ablation zone of the Greenland ice sheet. Anglais 58, 787–794 (2012).
Stibal, M. et al. Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann. Glaciol. 51, 1–8 (2010).
McCutcheon, J. et al. Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nat. Commun. 12, 570 (2021).
Telling, J. et al. Microbial nitrogen cycling on the Greenland Ice Sheet. Biogeosciences 9, 2431–2442 (2012).
Rassner, S. M. E. et al. Can the bacterial community of a high arctic glacier surface escape viral control? Front. Microbiol. 7 10.3389/fmicb.2016.00956 (2016).
Nicholes, M. J. et al. Bacterial dynamics in supraglacial habitats of the Greenland Ice Sheet. Front. Microbiol. 10 10.3389/fmicb.2019.01366 (2019).
Karlstrom, L., Zok, A. & Manga, M. Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia. Cryosphere 8, 537–546 (2014).
Mantelli, E., Camporeale, C. & Ridolfi, L. Supraglacial channel inception: modeling and processes. Water Resour. Res. 51, 7044–7063 (2015).
Gokul, J. K. et al. Illuminating the dynamic rare biosphere of the Greenland Ice Sheet’s Dark Zone. FEMS Microbiol. Ecol. 95 https://doi.org/10.1093/femsec/fiz177 (2019).
Hudleston, P. J. Structures and fabrics in glacial ice: a review. J. Struct. Geol. 81, 1–27 (2015).
Mader, H. M., Pettitt, M. E., Wadham, J. L., Wolff, E. W. & Parkes, R. J. Subsurface ice as a microbial habitat. Geology 34, 169–172 (2006).
Tedstone, A. J. et al. Algal growth and weathering crust state drive variability in western Greenland Ice Sheet ice albedo. Cryosphere 14, 521–538 (2020).
Ali, P. et al. A Glacier bacterium produces high yield of cryoprotective exopolysaccharide. Front. Microbiol. 10 10.3389/fmicb.2019.03096 (2020).
Dolev, M. B., Bernheim, R., Guo, S., Davies, P. L. & Braslavsky, I. Putting life on ice: bacteria that bind to frozen water. J. R. Soc. Interface 13, 20160210 (2016).
Smith, H. J. et al. Biofilms on glacial surfaces: hotspots for biological activity. npj Biofilms Microbiomes 2, 16008 (2016).
Cook, J. M. et al. Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 11, 2611–2632 (2017).
Consortium, R. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report. (Global Land Ice Measurements from Space, Colorado, USA, 2017).
Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 3 https://doi.org/10.3389/feart.2015.00054 (2015).
Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).
Bratbak, G. Bacterial biovolume and biomass estimations. Appl. Environ. Microb. 49, 1488–1493 (1985).
Montagnes, D. J. S., Berges, J. A., Harrison, P. J. & Taylor, F. J. R. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39, 1044–1060 (1994).
Dittmar, T. & Kattner, G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar. Chem. 83, 103–120 (2003).
Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).
Hock, R. et al. GlacierMIP—a model intercomparison of global-scale glacier mass-balance models and projections. Anglais 65, 453–467 (2019).
Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).
Cameron, K. A. et al. Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13483 (2016).
Bhatia, M. P. et al. Organic carbon export from the Greenland ice sheet. Geochim. Cosmochim. Acta 109, 329–344 (2013).
Maussion, F. et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev. 12, 909–931 (2019).
WGMS. Fluctuations of Glaciers Database. (World Glacier Monitoring Service, 2021).
Chandler, D. M. et al. Rapid development and persistence of efficient subglacial drainage under 900 m-thick ice in Greenland. Earth Planet. Sci. Lett. 566, 116982 (2021).
Santibanez, P. A., McConnell, J. R. & Priscu, J. C. A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site. Anglais 62, 655–673 (2016).
Stevens, I. T. et al. Near-surface hydraulic conductivity of northern hemisphere glaciers. Hydrol. Process. 32, 850–865 (2018).
WQA. Common Contaminants: Bacteria and Virus Issues, < https://www.wqa.org/learn-about-water/common-contaminants/bacteria-viruses > (2018).
Saccà, A. Methods for the estimation of the biovolume of microorganisms: a critical review. Limnol. Oceanogr. Methods 15, 337–348 (2017).
Di Mauro, B. et al. Glacier algae foster ice-albedo feedback in the European Alps. Sci. Rep. 10, 4739 (2020).
Norland, S. in Handbook of Methods in Aquatic Microbial Ecology (eds Paul F. Kemp, Barry F. Shedd, Evelyn B. Sherr, & Jonathan J. Cole) (Lawrence Erlbaum, 1993).
Miles, K. E. et al. Hydrology of debris-covered glaciers in High Mountain Asia. Earth-Sci. Rev. 207, 103212 (2020).
Bolch, T. et al. The state and fate of Himalayan glaciers. Science 336, 310–314 (2012).
Ribstein, P., Tiriau, E., Francou, B. & Saravia, R. Tropical climate and glacier hydrology: a case study in Bolivia. J. Hydrol. 165, 221–234 (1995).
Liu, Y. et al. Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier. Extremophiles 15, 411 (2011).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.