Earth and Planetary Sciences (miscellaneous); General Environmental Science
Abstract :
[en] Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
van de Wal, R. S. W. ; Institute for Marine and Atmospheric Research Utrecht Utrecht University TA Utrecht The Netherlands ; Department of Physical Geography Utrecht University TA Utrecht The Netherlands
Nicholls, R. J. ; Tyndall Centre for Climate Change Research University of East Anglia Norwich UK
Behar, D.; San Francisco Public Utilities Commission San Francisco CA USA
McInnes, K. ; Climate Change Research Centre UNSW Australia Sydney NSW Australia
Stammer, D. ; Centrum für Erdsystemforschung und Nachhaltigkeit Universität Hamburg Hamburg Germany
Lowe, J. A.; Met Office Hadley Centre Exeter UK ; Priestley Centre University of Leeds Leeds UK
Church, J. A. ; Climate Change Research Centre UNSW Australia Sydney NSW Australia ; Australian Centre for Excellence in Antarctic Science (ACEAS) University of Tasmania Hobart TAS Australia
DeConto, R. ; Department of Geosciences University of Massachusetts‐Amherst Amherst MA USA
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Goelzer, H. ; NORCE Norwegian Research Centre Bjerknes Centre for Climate Research Bergen Norway
Haasnoot, M. ; Deltares Delft The Netherlands
Haigh, I. D. ; School of Ocean and Earth Science University of Southampton National Oceanography Centre Southampton UK
Hinkel, J. ; Adaptation and Social Learning Global Climate Forum Berlin Germany
Horton, B. P.; Earth Observatory of Singapore Nanyang Technological University Singapore Singapore ; Asian School of the Environment Nanyang Technological University Singapore Singapore
James, T. S. ; Natural Resources Canada Geological Survey of Canada Sidney BC Canada
Jenkins, A. ; Department of Geography and Environmental Sciences Northumbria University Newcastle upon Tyne UK
LeCozannet, G. ; Coastal Risks and Climate Change Unit Risks and Prevention Division BRGM Orléans France
Levermann, A. ; Potsdam Institute for Climate Impact Research Potsdam Germany ; LDEO Columbia University New York NY USA ; Physics Institute University of Potsdam Potsdam Germany
Lipscomb, W. H. ; Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA
Marzeion, B. ; Institute of Geography and MARUM ‐ Center for Marine Environmental Sciences University of Bremen Bremen Germany
Pattyn, F. ; Laboratoire de Glaciologie Université libre de Bruxelles Brussels Belgium
Payne, A. J. ; School of Geographical Sciences University of Bristol Bristol UK
Pfeffer, W. T.; INSTAAR and Department of Civil, Environmental, Architectural Engineering University of Colorado Boulder CO USA
Price, S. F. ; Theoretical Division Los Alamos National Laboratory Los Alamos NM USA
Seroussi, H. ; Thayer School of Engineering Dartmouth College Hanover NH USA
Sun, S. ; Coastal Risks and Climate Change Unit Risks and Prevention Division BRGM Orléans France
Veatch, W. ; US Army Corps of Engineers, Headquarters Washington DC USA
White, K.; US Department of Defense Office of the Deputy Assistant Secretary of Defense (Environment and Energy Resilience) DC Washington USA
CSIRO - Commonwealth Scientific and Industrial Research Organisation Met Office - Meteorological Office NCAR - National Center for Atmospheric Research NSF - National Science Foundation DFG - Deutsche Forschungsgemeinschaft F.R.S.-FNRS - Fonds de la Recherche Scientifique EOS - Earth Observatory of Singapore ARC - Australian Research Council
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S., & Ligtenberg, S. R. M. (2018). Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophysical Research Letters, 45, 4086–4095. https://doi.org/10.1002/2017gl076652
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff Douglas, J., Hock, R., Khroulev, C., et al. (2019). Contribution of the Greenland ice sheet to sea level over the next millennium. Science Advances, 5, eaav9396. https://doi.org/10.1126/sciadv.aav9396
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., & Cooke, R. M. (2019). Ice sheet contributions to future sea level rise from structured expert judgment. Proceedings of the National Academy of Sciences of the United States of America, 116, 11195–11200. https://doi.org/10.1073/pnas.1817205116
Bamber, J. L., Westaway, R. M., Marzeion, B., & Wouters, B. (2018). The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13, 063008. https://doi.org/10.1088/1748-9326/aac2f0
Bamzai, A., Cravens, A. E., Wade, A., & McPherson, R. A. (2021). Engaging with stakeholders to produce actionable science: A framework and guidance. Weather Climate and Society, 13, 1027–1041.
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., et al. (2018). Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science, 360, 1335–1339. https://doi.org/10.1126/science.aao1447
Bassis, J. N., Berg, B., Crawford, A. J., & Benn, D. I. (2021). Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science, 372, 1342–1344. https://doi.org/10.1126/science.abf6271
Bassis, J. N., & Walker, C. C. (2012). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings: Mathematical, Physical, and Engineering Sciences, 468, 913–931. https://doi.org/10.1098/rspa.2011.0422
Beier, P., Hansen, L. J., Helbrecht, L., & Behar, D. (2017). A how-to guide for coproduction of actionable science. Conservation Letters, 10, 288–296. https://doi.org/10.1111/conl.12300
Bertram, R. A., Wilson, D. J., van de Flierdt, T., McKay, R. M., Patterson, M. O., Jimenez-Espejo, F. J., et al. (2018). Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica. Earth and Planetary Science Letters, 494, 109–116. https://doi.org/10.1016/j.epsl.2018.04.054
Bierkens, M. F. P., & Wada, Y. (2019). Non-renewable groundwater use and groundwater depletion: A review. Environmental Research Letters, 14, 063002. https://doi.org/10.1088/1748-9326/ab1a5f
Bulthuis, K., Arnst, M., Sun, S., & Pattyn, F. (2019). Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. The Cryosphere, 13, 1349–1380. https://doi.org/10.5194/tc-13-1349-2019
Calov, R., Beyer, S., Greve, R., Beckmann, J., Willeit, M., Kleiner, T., et al. (2018). Simulation of the future sea level contribution of Greenland with a new glacial system model. The Cryosphere, 12, 3097–3121. https://doi.org/10.5194/tc-12-3097-2018
Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., et al. (2003). Knowledge systems for sustainable development. Proceedings of the National Academy of Sciences, 100(14), 8086–8091. https://doi.org/10.1073/pnas.1231332100
Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., & Jager, J. (2002). Salience, credibility, legitimacy and boundaries: Linking research, assessment and decision making. Harvard University, John F. Kennedy School of Government.
Cazenave, A., Meyssignac, B., Ablain, M., Balmaseda, M., Bamber, J., Barletta, V., et al. (2018). Global sea level budget 1993–present. Earth System Science Data, 10, 1551–1590.
Choi, Y., Morlighem, M., Rignot, E., & Wood, M. (2021). Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Communications Earth & Environment, 2, 26. https://doi.org/10.1038/s43247-021-00092-z
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., et al. (2013). Sea level change. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.026
Clerc, F., Minchew, B. M., & Behn, M. D. (2019). Marine ice cliff instability mitigated by slow removal of ice shelves. Geophysical Research Letters, 46, 12108–12116. https://doi.org/10.1029/2019gl084183
Comeau, D., Asay-Davis, X. S., Begeman, C., Hoffman, M. J., Lin, W., Petersen, M. R., et al. (2022). The DOE E3SM v1.2 cryosphere configuration: Description and simulated Antarctic ice-shelf basal melting. Journal of Advances in Modeling Earth Systems, 14, e2021MS002468. https://doi.org/10.1029/2021MS002468
Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., et al. (2020). Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+). The Cryosphere, 14, 2283–2301. https://doi.org/10.5194/tc-14-2283-2020
Coulon, V., Bulthuis, K., Whitehouse, P. L., Sun, S., Haubner, K., Zipf, L., & Pattyn, F. (2021). Contrasting response of West and East Antarctic ice sheets to glacial isostatic adjustment. Journal of Geophysical Research: Earth Surface, 126, e2020JF006003. https://doi.org/10.1029/2020jf006003
Crawford, A. J., Benn, D. I., Todd, J., Åström, J. A., Bassis, J. N., & Zwinger, T. (2021). Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nature Communications, 12, 2701. https://doi.org/10.1038/s41467-021-23070-7
Csatho, B. M., Schenk, A. F., van der Veen, C. J., Babonis, G., Duncan, K., Rezvanbehbahani, S., et al. (2014). Laser altimetry reveals complex pattern of Greenland ice sheet dynamics. Proceedings of the National Academy of Sciences of the United States of America, 111, 18478–18483. https://doi.org/10.1073/pnas.1411680112
Darelius, E., Fer, I., & Nicholls, K. W. (2016). Observed vulnerability of Filchner-Ronne ice shelf to wind-driven inflow of warm deep water. Nature Communications, 7, 12300. https://doi.org/10.1038/ncomms12300
DeConto, R. M., & Pollard, D. (2016). Contribution of Antarctica to past and future sea level rise. Nature, 531, 591–597. https://doi.org/10.1038/nature17145
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez, N., et al. (2021). The Paris Climate Agreement and future sea level rise from Antarctica. Nature, 593, 83–89.
Delhasse, A., Fettweis, X., Kittel, C., Amory, C., & Agosta, C. (2018). Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland ice sheet. The Cryosphere, 12, 3409–3418. https://doi.org/10.5194/tc-12-3409-2018
Delhasse, A., Hanna, E., Kittel, C., & Fettweis, X. (2020). Brief communication: CMIP6 does not suggest any circulation change over Greenland in summer by 2100. The Cryosphere Discussions, 2020, 1–8.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., et al. (2015). Sea level rise due to polar ice-sheet mass loss during past warm periods. Science, 349, aaa4019. https://doi.org/10.1126/science.aaa4019
Dyer, B., Austermann, J., D’Andrea, W. J., Creel, R. C., Sandstrom, M. R., Cashman, M., et al. (2021). Sea level trends across the Bahamas constrain peak last interglacial ice melt. Proceedings of the National Academy of Sciences, 118, e2026839118. https://doi.org/10.1073/pnas.2026839118
Edwards, T. L., Nowicki, S., Goelzer, H., Seroussi, H., Marzeion, C. B., Smith, N. C. J. J., et al. (2021). Quantifying uncertainties in the land ice contribution to 21st century sea level rise. Nature.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., & van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41, 866–872. https://doi.org/10.1002/2013gl059010
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A. (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12, 168–173. https://doi.org/10.1038/s41561-019-0300-3
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., et al. (2019). Assessment of sub-shelf melting parameterizations using the ocean-ice-sheet coupled model NEMO (v3.6)–Elmer/Ice(v8.3). Geoscientific Model Development, 12, 2255–2283. https://doi.org/10.5194/gmd-12-2255-2019
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., et al. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11, 1015–1033. https://doi.org/10.5194/tc-11-1015-2017
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., et al. (2020). GrSMBMIP: Intercomparison of the modeled 1980–2012 surface mass balance over the Greenland ice sheet. The Cryosphere, 14, 3935–3958. https://doi.org/10.5194/tc-14-3935-2020
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Adalgeirsdottir, G., Drijfhout, S. S., Edwards, T. L., et al. (2021). Ocean, cryosphere and sea level change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Fürst, J. J., Goelzer, H., & Huybrechts, P. (2015). Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. The Cryosphere, 9, 1039–1062.
Fyke, J., Sergienko, O., Löfverström, M., Price, S., & Lenaerts, J. T. M. (2018). An overview of interactions and feedbacks between ice sheets and the Earth system. Reviews of Geophysics, 56, 361–408. https://doi.org/10.1029/2018rg000600
Garner, A. J., Weiss, J. L., Parris, A., Kopp, R. E., Horton, R. M., Overpeck, J. T., & Horton, B. P. (2018). Evolution of 21st century sea level rise projections. Earth's Future, 6, 1603–1615. https://doi.org/10.1029/2018ef000991
Goelzer, H., Huybrechts, P., Raper, S. C. B., Loutre, M. F., Goosse, H., & Fichefet, T. (2012). Millennial total sea level commitments projected with the Earth system model of intermediate complexity LOVECLIM. Environmental Research Letters, 7, 045401. https://doi.org/10.1088/1748-9326/7/4/045401
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., et al. (2020). The future sea level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6. The Cryosphere, 14, 3071–3096. https://doi.org/10.5194/tc-14-3071-2020
Gold, H. J. (1993). Uncertainty: A guide to dealing with uncertalnty in quantitative risk and policy analysis by M. Granger Morgan and Max Henrion Cambridge University Press, New York, 1990, xii + 332 pp. ISBN 0-521-36542-2. List: $54.95. The Engineering Economist, 38, 347. https://doi.org/10.1080/00137919308903109
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J., Trusel, L. D., & Edwards, T. L. (2019). Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566, 65–72. https://doi.org/10.1038/s41586-019-0889-9
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J., & Gasson, E. G. W. (2015). The multi-millennial Antarctic commitment to future sea level rise. Nature, 526, 421–425. https://doi.org/10.1038/nature15706
Gomez, N., Mitrovica, J. X., Huybers, P., & Clark, P. U. (2010). Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geoscience, 3, 850–853. https://doi.org/10.1038/ngeo1012
Gomez, N., Pollard, D., & Holland, D. (2015). Sea level feedback lowers projections of future Antarctic ice sheet mass loss. Nature Communications, 6, 8798. https://doi.org/10.1038/ncomms9798
Goodwin, P., Haigh, I. D., Rohling, E. J., & Slangen, A. (2017). A new approach to projecting 21st century sea level changes and extremes. Earth's Future, 5, 240–253. https://doi.org/10.1002/2016ef000508
Gregory, J. M., George, S. E., & Smith, R. S. (2020). Large and irreversible future decline of the Greenland ice sheet. The Cryosphere, 14, 4299–4322. https://doi.org/10.5194/tc-14-4299-2020
Gregory, J. M., & Huybrechts, P. (2006). Ice-sheet contributions to future sea level change. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 364, 1709–1732. https://doi.org/10.1098/rsta.2006.1796
Griggs, G. (2017). Rising seas in California: An update on sea level rise science. California Ocean Science Trust.
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., & Gagliardini, O. (2012). The stability of grounding lines on retrograde slopes. The Cryosphere, 6, 1497–1505. https://doi.org/10.5194/tc-6-1497-2012
Haasnoot, M., Kwadijk, J. H., van Alphen, J., Le Bars, D., van den Hurk, B., Diermanse, F., et al. (2020). Adaptation to uncertain sea level rise; how uncertainty in Antarctic mass loss impacts the coastal adaptation strategy of the Netherlands. Environmental Research Letters, 15, 034007. https://doi.org/10.1088/1748-9326/ab666c
Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23, 485–498. https://doi.org/10.1016/j.gloenvcha.2012.12.006
Hall, J. A., Weaver, C. P., Obeysekera, J., Crowell, M., Horton, R. M., Kopp, R. E., et al. (2019). Rising sea levels: Helping decision-makers confront the inevitable. Coastal Management, 47, 127–150. https://doi.org/10.1080/08920753.2019.1551012
Hanna, E., Hall, R. J., Cropper, T. E., Ballinger, T. J., Wake, L., Mote, T., & Cappelen, J. (2018). Greenland blocking index daily series 1851–2015: Analysis of changes in extremes and links with North Atlantic and UK climate variability and change. International Journal of Climatology, 38, 3546–3564. https://doi.org/10.1002/joc.5516
Haseloff, M., & Sergienko, O. V. (2018). The effect of buttressing on grounding line dynamics. Journal of Glaciology, 64, 417–431. https://doi.org/10.1017/jog.2018.30
Hawley, W. B., Hay, C. C., Mitrovica, J. X., & Kopp, R. E. (2020). A spatially variable time series of sea level change due to artificial water impoundment. Earth's Future, 8, e2020EF001497. https://doi.org/10.1029/2020ef001497
Hazel, J. E., & Stewart, A. L. (2020). Bistability of the Filchner-Ronne ice shelf cavity circulation and basal melt. Journal of Geophysical Research: Oceans, 125, e2019JC015848. https://doi.org/10.1029/2019jc015848
Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., & Rae, J. (2012). Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485, 225–228. https://doi.org/10.1038/nature11064
Heuzé, C., Heywood, K. J., Stevens, D. P., & Ridley, J. K. (2013). Southern Ocean bottom water characteristics in CMIP5 models. Geophysical Research Letters, 40, 1409–1414. https://doi.org/10.1002/grl.50287
Hinkel, J., Church, J. A., Gregory, J. M., Lambert, E., Le Cozannet, G., Lowe, J., et al. (2019). Meeting user needs for sea level rise information: A decision analysis perspective. Earth's Future, 7, 320–337. https://doi.org/10.1029/2018ef001071
Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., & Peijun, S. (2015). Sea level rise scenarios and coastal risk management. Nature Climate Change, 5, 188–190. https://doi.org/10.1038/nclimate2505
HM Government. (2020). National risk register. Cabinet Office.
Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., & Fettweis, X. (2020). Greater Greenland ice sheet contribution to global sea level rise in CMIP6. Nature Communications, 11, 6289. https://doi.org/10.1038/s41467-020-20011-8
Hofer, S., Tedstone, A. J., Fettweis, X., & Bamber, J. L. (2019). Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nature Climate Change, 9, 523–528. https://doi.org/10.1038/s41558-019-0507-8
Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A., & Steig, E. J. (2019). West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nature Geoscience, 12, 718–724. https://doi.org/10.1038/s41561-019-0420-9
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., et al. (2021). Accelerated global glacier mass loss in the early twenty-first century. Nature, 592, 726–731. https://doi.org/10.1038/s41586-021-03436-z
Huss, M., & Hock, R. (2015). A new model for global glacier change and sea level rise. Frontiers in Earth Science, 3, 54. https://doi.org/10.3389/feart.2015.00054
Jadwin, E. (1928). The plan for flood control of the Mississippi River in its Alluvial valley. Presented to the secretary of war and by him to Congress. The Annals of the American Academy of Political and Social Science, 135, 35–44. https://doi.org/10.1177/000271622813500105
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., et al. (2018). West Antarctic ice sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience, 11, 733–738. https://doi.org/10.1038/s41561-018-0207-4
Jones, R. N., Patwardhan, A., Cohen, S. J., Dessai, S., Lammel, A., Lempert, R. J., et al. (2014). Foundations for decision making. In Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Jourdain, N. C., Asay-Davis, X., Hattermann, T., Straneo, F., Seroussi, H., Little, C. M., & Nowicki, S. (2020). A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. The Cryosphere, 14, 3111–3134. https://doi.org/10.5194/tc-14-3111-2020
Kachuck, S. B., Martin, D. F., Bassis, J. N., & Price, S. F. (2020). Rapid viscoelastic deformation slows marine ice sheet instability at pine island glacier. Geophysical Research Letters, 47, e2019GL086446. https://doi.org/10.1029/2019gl086446
Karabil, S., Sutanudjaja, E. H., Lambert, E., Bierkens, M. F. P., & Van de Wal, R. S. W. (2021). Contribution of land water storage change to regional sea level rise over the twenty-first century. Frontiers in Earth Science, 9, 296. https://doi.org/10.3389/feart.2021.627648
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël, B. P. Y., et al. (2020). Dynamic ice loss from the Greenland ice sheet driven by sustained glacier retreat. Communications Earth & Environment, 1, 1. https://doi.org/10.1038/s43247-020-0001-2
Kirkbride, M. P., & Deline, P. (2013). The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surface Processes and Landforms, 38, 1779–1792. https://doi.org/10.1002/esp.3416
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S., et al. (2017). Evolving understanding of Antarctic ice sheet physics and ambiguity in probabilistic sea level projections. Earth's Future, 5, 1217–1233. https://doi.org/10.1002/2017ef000663
Kopp, R. E., Gilmore, E. A., Little, C. M., Lorenzo-Trueba, J., Ramenzoni, V. C., & Sweet, W. V. (2019). Usable science for managing the risks of sea level rise. Earth's Future, 7, 1235–1269. https://doi.org/10.1029/2018ef001145
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global temperature rise of 1.5°C on Asia’s glaciers. Nature, 549, 257–260. https://doi.org/10.1038/nature23878
Lambert, E., Le Bars, D., Goelzer, H., & van de Wal, R. S. W. (2021). Correlations between sea level components are driven by regional climate change. Earth's Future, 9, e2020EF001825. https://doi.org/10.1029/2020ef001825
Larour, E., Seroussi, H., Adhikari, S., Ivins, E., Caron, L., Morlighem, M., & Schlegel, N. (2019). Slowdown in Antarctic mass loss from solid Earth and sea level feedbacks. Science, 364, eaav7908. https://doi.org/10.1126/science.aav7908
Lazeroms, W. M. J., Jenkins, A., Gudmundsson, G. H., & van de Wal, R. S. W. (2018). Modeling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. The Cryosphere, 12, 49–70. https://doi.org/10.5194/tc-12-49-2018
Lazeroms, W. M. J., Jenkins, A., Rienstra, S. W., & van de Wal, R. S. W. (2019). An analytical derivation of ice-shelf basal melt based on the dynamics of meltwater plumes. Journal of Physical Oceanography, 49, 917–939. https://doi.org/10.1175/jpo-d-18-0131.1
Le Bars, D., Drijfhout, S., & de Vries, H. (2017). A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environmental Research Letters, 12, 044013. https://doi.org/10.1088/1748-9326/aa6512
Le clec'h, S., Charbit, S., Quiquet, A., Fettweis, X., Dumas, C., Kageyama, M., et al. (2019). Assessment of the Greenland ice sheet-atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. The Cryosphere, 13, 373–395. https://doi.org/10.5194/tc-13-373-2019
Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis. RAND Corporation.
Levermann, A., Clark, P. U., Marzeion, B., Milne, G. A., Pollard, D., Radic, V., & Robinson, A. (2013). The multimillennial sea level commitment of global warming. Proceedings of the National Academy of Sciences of the United States of America, 110, 13745–13750. https://doi.org/10.1073/pnas.1219414110
Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., et al. (2020). Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 11, 35–76. https://doi.org/10.5194/esd-11-35-2020
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J., et al. (2020). Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proceedings of the National Academy of Sciences, 117, 24741–24735. https://doi.org/10.1073/pnas.1912890117
Lowe, J. A., Huntingford, C., Raper, S. C. B., Jones, C. D., Liddicoat, S. K., & Gohar, L. K. (2009). How difficult is it to recover from dangerous levels of global warming? Environmental Research Letters, 4, 014012. https://doi.org/10.1088/1748-9326/4/1/014012
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., et al. (2020). Partitioning the uncertainty of ensemble projections of global glacier mass change. Earth's Future, 8, e2019EF001470. https://doi.org/10.1029/2019ef001470
Marzeion, B., Jarosch, A. H., & Hofer, M. (2012). Past and future sea level change from the surface mass balance of glaciers. The Cryosphere, 6, 1295–1322. https://doi.org/10.5194/tc-6-1295-2012
Marzeion, B., Kaser, G., Maussion, F., & Champollion, N. (2018). Limited influence of climate change mitigation on short-term glacier mass loss. Nature Climate Change, 8, 305–308. https://doi.org/10.1038/s41558-018-0093-1
Matthews, J. B. R., Möller, V., van Diemen, R., Fuglestvedt, J. S., Masson-Delmotte, V., Méndez, C., et al. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), (pp. 2215–2256). Cambridge University Press. IPCC, 2021: Annex VII: Glossary. https://doi.org/10.1017/9781009157896.022
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 747–846). Cambridge University Press.
Memorandum Submitted by the Government Office for Science and the Cabinet Office (SAGE 00). (2011). Retrieved from https://publications.parliament.uk/pa/cm201011/cmselect/cmsctech/498/498we02.htm
Moss, R. H., Meehl, G. A., Lemos, M. C., Smith, J. B., Arnold, J. R., Arnott, J. C., et al. (2013). Climate change. Hell and high water: Practice-relevant adaptation science. Science, 342, 696–698. https://doi.org/10.1126/science.1239569
Naughten, K. A., De Rydt, J., Rosier, S. H. R., Jenkins, A., Holland, P. R., & Ridley, J. K. (2021). Two-timescale response of a large Antarctic ice shelf to climate change. Nature Communications, 12, 1991. https://doi.org/10.1038/s41467-021-22259-0
Naughten, K. A., Galton-Fenzi, B. K., Meissner, K. J., England, M. H., Brassington, G. B., Colberg, F., et al. (2017). Spurious sea ice formation caused by oscillatory ocean tracer advection schemes. Ocean Modeling, 116, 108–117. https://doi.org/10.1016/j.ocemod.2017.06.010
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Slangen, A. B. A., Wahl, T., Hinkel, J., & Long, A. J. (2021). Integrating new sea level scenarios into coastal risk and adaptation assessments: An ongoing process. WIREs Climate Change, 12, e706. https://doi.org/10.1002/wcc.706
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., et al. (2021). A global analysis of subsidence, relative sea level change, and coastal flood exposure. Nature Climate Change, 11, 338–342. https://doi.org/10.1038/s41558-021-00993-z
Nicholls, R. J., & Tol, R. S. J. (2006). Impacts and responses to sea level rise: A global analysis of the SRES scenarios over the twenty-first century. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 1073–1095. https://doi.org/10.1098/rsta.2006.1754
Nicholson, L., & Benn, D. I. (2006). Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 52, 463–470. https://doi.org/10.3189/172756506781828584
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards, T. L., et al. (2013). Future sea level rise from Greenland's main outlet glaciers in a warming climate. Nature, 497, 235–238. https://doi.org/10.1038/nature12068
Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J., & van den Broeke, M. R. (2021). A 21st century warming threshold for sustained Greenland ice sheet mass loss. Geophysical Research Letters, 48, e2020GL090471. https://doi.org/10.1029/2020GL090471
Oppenheimer, B. G., Hinkel, J., van de Wal, R. S. W., Magnan, A. K., Abd-Elgawad, A., Cai, R., et al. (2019). Sea level rise and implications for low lying islands, coasts, and communities. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
Palmer, M. D., Gregory, J. M., Bagge, M., Calvert, D., Hagedoorn, J. M., Howard, T., et al. (2020). Exploring the drivers of global and local sea level change over the 21st century and beyond. Earth's Future, 8, e2019EF001413. https://doi.org/10.1029/2019ef001413
Palmer, M. D., Howard, T., Tinker, J., Lowe, J., Bricheno, L., Calvert, D., et al. (2018). UKCP18 Marine report, DEFRA. BEIS Met Office Hadley Center and Environmental Agency. Retrieved from https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-marine-report-updated.pdf
Pan, L., Powell Evelyn, M., Latychev, K., Mitrovica Jerry, X., Creveling Jessica, R., Gomez, N., et al. (2022). Rapid postglacial rebound amplifies global sea level rise following West Antarctic ice sheet collapse. Science Advances, 7, eabf7787.
Paolo, F. S., Fricker, H. A., & Padman, L. (2015). Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327–331. https://doi.org/10.1126/science.aaa0940
Parizek, B. R., Christianson, K., Alley, R. B., Voytenko, D., Vaňková, I., Dixon, T. H., et al. (2019). Ice-cliff failure via retrogressive slumping. Geology, 47, 449–452. https://doi.org/10.1130/g45880.1
Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G., et al. (2018). The Greenland and Antarctic ice sheets under 1.5°C global warming. Nature Climate Change, 8, 1053–1061. https://doi.org/10.1038/s41558-018-0305-8
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., et al. (2012). Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. The Cryosphere, 6, 573–588. https://doi.org/10.5194/tc-6-573-2012
Payne, A. J., Nowicki, S., Abe-Ouchi, A., Agosta, C., Alexander, T. A. P., Asay-Davis, X., et al. (2021). Future sea level under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets. GRL.
Pelle, T., Morlighem, M., & Bondzio, J. H. (2019). Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model. The Cryosphere, 13, 1043–1049. https://doi.org/10.5194/tc-13-1043-2019
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., et al. (2021). Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11, 226–233. https://doi.org/10.1038/s41558-020-00972-w
Pollard, D., DeConto, R. M., & Alley, R. B. (2015). Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 412, 112–121. https://doi.org/10.1016/j.epsl.2014.12.035
Pollard, D., Gomez, N., & DeConto, R. M. (2017). Variations of the Antarctic ice sheet in a coupled ice sheet-Earth-sea level model: Sensitivity to viscoelastic Earth properties. Journal of Geophysical Research: Earth Surface, 122, 2124–2138. https://doi.org/10.1002/2017jf004371
Price, S. F., Payne, A. J., Howat, I. M., & Smith, B. E. (2011). Committed sea level rise for the next century from Greenland ice sheet dynamics during the past decade. Proceedings of the National Academy of Sciences of the United States of America, 108, 8978–8983. https://doi.org/10.1073/pnas.1017313108
Ranger, N., Lowe, J. A., & Reeder, T. (2013). Addressing deep uncertainty over long-term climate in major infrastructure projects: Four innovations of the Thames Estuary 2100 Project. EURO Journal on Decision Processes, 1, 233–262. https://doi.org/10.1007/s40070-013-0014-5
Reager, J. T., Gardner, A. S., Famiglietti, J. S., Wiese, D. N., Eicker, A., & Lo, M. H. (2016). A decade of sea level rise slowed by climate-driven hydrology. Science, 351, 699–703. https://doi.org/10.1126/science.aad8386
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., & Winkelmann, R. (2018). Antarctic sub-shelf melt rates via PICO. The Cryosphere, 12, 1969–1985. https://doi.org/10.5194/tc-12-1969-2018
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., & Morlighem, M. (2019). Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116, 1095–1103. https://doi.org/10.1073/pnas.1812883116
Russell, J. L., Kamenkovich, I., Bitz, C., Ferrari, R., Gille, S. T., Goodman, P. J., et al. (2018). Metrics for the evaluation of the Southern Ocean in coupled climate models and Earth system models. Journal of Geophysical Research: Oceans, 123, 3120–3143. https://doi.org/10.1002/2017jc013461
Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., & Schröder, M. (2020). Exceptionally warm and prolonged flow of warm deep water toward the Filchner-Ronne ice shelf in 2017. Geophysical Research Letters, 47, e2020GL088119. https://doi.org/10.1029/2020gl088119
Schlemm, T., & Levermann, A. (2019). A simple stress-based cliff-calving law. The Cryosphere, 13, 2475–2488. https://doi.org/10.5194/tc-13-2475-2019
Schoof, C. (2007). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research: Earth Surface, 112. https://doi.org/10.1029/2006jf000664
Sergienko, O. V., & Wingham, D. J. (2019). Grounding line stability in a regime of low driving and basal stresses. Journal of Glaciology, 65, 833–849. https://doi.org/10.1017/jog.2019.53
Sergienko, O. V., & Wingham, D. J. (2021). Bed topography and marine ice-sheet stability. Journal of Glaciology, 1–15. https://doi.org/10.1017/jog.2021.79
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., et al. (2020). ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14, 3033–3070. https://doi.org/10.5194/tc-14-3033-2020
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., et al. (2018). Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558, 219–222.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., et al. (2020). Mass balance of the Greenland ice sheet from 1992 to 2018. Nature, 579, 233–239.
Shepherd, T. G., & Lloyd, E. A. (2021). Meaningful climate science. Climatic Change, 169, 17. https://doi.org/10.1007/s10584-021-03246-2
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. (2020). An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58, e2019RG000678. https://doi.org/10.1029/2019rg000678
Simpson, M., James, R., Hall, J. W., Borgomeo, E., Ives, M. C., Almeida, S., et al. (2016). Decision analysis for management of natural hazards. Annual Review of Environment and Resources, 41, 489–516. https://doi.org/10.1146/annurev-environ-110615-090011
Smith, R. S., Mathiot, P., Siahaan, A., Lee, V., Cornford, S. L., Gregory, J. M., et al. (2021). Coupling the UK Earth system model to dynamic models of the Greenland and Antarctic ice sheets. Journal of Advances in Modeling Earth Systems, 13, e2021MS002520. https://doi.org/10.1029/2021ms002520
Stammer, D., van de Wal, R. S. W., Nicholss, R. J., Church, J. A., Le Cozannet, G., Lowe, J. A., et al. (2019). Framework for high-end estimates of sea level rise for stakeholder applications. Earth's Future, 7, 923–938. https://doi.org/10.1029/2019ef001163
Sun, S., Pattyn, F., Simon, E. G., Albrecht, T., Cornford, S., Calov, R., et al. (2020). Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). Journal of Glaciology, 66, 891–904. https://doi.org/10.1017/jog.2020.67
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke, P., van Meijgaard, E., & van den Broeke, M. R. (2015). Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 8, 927–932. https://doi.org/10.1038/ngeo2563
Tsai, V. C., Stewart, A. L., & Thompson, A. F. (2015). Marine ice-sheet profiles and stability under Coulomb basal conditions. Journal of Glaciology, 61, 205–215. https://doi.org/10.3189/2015jog14j221
Van Breedam, J., Goelzer, H., & Huybrechts, P. (2020). Semi-equilibrated global sea level change projections for the next 10,000 yr. Earth System Dynamics, 11953–11976.
Van De Wal, R. S. W. (2001). Short-term volume changes of the Greenland ice sheet in response to doubled CO2 conditions. Tellus Series B: Chemical and Physical Meteorology, 53, 94–102. https://doi.org/10.3402/tellusb.v53i1.16547
Van Den Broeke, M. R. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946. https://doi.org/10.5194/tc-10-1933-2016
Van Westen, R. M., & Dijkstra, H. A. (2021). Ocean eddies strongly affect global mean sea level projections. Science Advances, 7, eabf1674. https://doi.org/10.1126/sciadv.abf1674
Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., & van den Broeke, M. R. (2015). Coupled simulations of Greenland ice sheet and climate change up to A.D. 2300. Geophysical Research Letters, 42, 3927–3935. https://doi.org/10.1002/2014gl061142
Vogel, J., McNie, E., & Behar, D. (2016). Co-producing actionable science for water utilities. Climate Services, 2–3, 30–40. https://doi.org/10.1016/j.cliser.2016.06.003
Wada, Y., van Beek, L. P. H., Sperna Weiland, F. C., Chao, B. F., Wu, Y.-H., & Bierkens, M. F. P. (2012). Past and future contribution of global groundwater depletion to sea level rise. Geophysical Research Letters, 39. https://doi.org/10.1029/2012gl051230
Wang, J., Song, C., Reager, J. T., Yao, F., Famiglietti, J. S., Sheng, Y., et al. (2018). Recent global decline in endorheic basin water storages. Nature Geoscience, 11, 926–932. https://doi.org/10.1038/s41561-018-0265-7
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., et al. (2021). Ocean forcing drives glacier retreat in Greenland. Science Advances, 7, eaba7282. https://doi.org/10.1126/sciadv.aba7282
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77, 161–170. https://doi.org/10.1007/s00027-014-0377-0