Available on ORBi since
08 November 2022
Article (Scientific journals)
A High‐End Estimate of Sea Level Rise for Practitioners
van de Wal, R. S. W.; Nicholls, R. J.; Behar, D. et al.
2022 • In Earth's Future, 10 (11)
Peer Reviewed verified by ORBi
 

Files


Full Text
Earth s Future - 2022 - Wal - A High‐End Estimate of Sea Level Rise for Practitioners.pdf
Author postprint (623.63 kB)

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Earth and Planetary Sciences (miscellaneous); General Environmental Science
Abstract :
[en] Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.
Research center :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
van de Wal, R. S. W. ;  Institute for Marine and Atmospheric Research Utrecht Utrecht University TA Utrecht The Netherlands
Nicholls, R. J. ;  Tyndall Centre for Climate Change Research University of East Anglia Norwich UK
Behar, D.;  San Francisco Public Utilities Commission San Francisco CA USA
McInnes, K. ;  Climate Change Research Centre UNSW Australia Sydney NSW Australia
Stammer, D. ;  Centrum für Erdsystemforschung und Nachhaltigkeit Universität Hamburg Hamburg Germany
Lowe, J. A.;  Met Office Hadley Centre Exeter UK
Church, J. A. ;  Climate Change Research Centre UNSW Australia Sydney NSW Australia
DeConto, R. ;  Department of Geosciences University of Massachusetts‐Amherst Amherst MA USA
Fettweis, Xavier  ;  Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Goelzer, H. ;  NORCE Norwegian Research Centre Bjerknes Centre for Climate Research Bergen Norway
Haasnoot, M. ;  Deltares Delft The Netherlands
Haigh, I. D. ;  School of Ocean and Earth Science University of Southampton National Oceanography Centre Southampton UK
Hinkel, J. ;  Adaptation and Social Learning Global Climate Forum Berlin Germany
Horton, B. P.;  Earth Observatory of Singapore Nanyang Technological University Singapore Singapore
James, T. S. ;  Natural Resources Canada Geological Survey of Canada Sidney BC Canada
Jenkins, A. ;  Department of Geography and Environmental Sciences Northumbria University Newcastle upon Tyne UK
LeCozannet, G. ;  Coastal Risks and Climate Change Unit Risks and Prevention Division BRGM Orléans France
Levermann, A. ;  Potsdam Institute for Climate Impact Research Potsdam Germany
Lipscomb, W. H. ;  Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA
Marzeion, B. ;  Institute of Geography and MARUM ‐ Center for Marine Environmental Sciences University of Bremen Bremen Germany
Pattyn, F. ;  Laboratoire de Glaciologie Université libre de Bruxelles Brussels Belgium
Payne, A. J. ;  School of Geographical Sciences University of Bristol Bristol UK
Pfeffer, W. T.;  INSTAAR and Department of Civil, Environmental, Architectural Engineering University of Colorado Boulder CO USA
Price, S. F. ;  Theoretical Division Los Alamos National Laboratory Los Alamos NM USA
Seroussi, H. ;  Thayer School of Engineering Dartmouth College Hanover NH USA
Sun, S. ;  Coastal Risks and Climate Change Unit Risks and Prevention Division BRGM Orléans France
Veatch, W. ;  US Army Corps of Engineers, Headquarters Washington DC USA
White, K.;  US Department of Defense Office of the Deputy Assistant Secretary of Defense (Environment and Energy Resilience) DC Washington USA
More authors (18 more) Less
Language :
English
Title :
A High‐End Estimate of Sea Level Rise for Practitioners
Publication date :
November 2022
Journal title :
Earth's Future
eISSN :
2328-4277
Publisher :
American Geophysical Union (AGU)
Volume :
10
Issue :
11
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Tier-1 supercomputer
Funders :
Commonwealth Scientific and Industrial Research Organisation
Met Office
National Center for Atmospheric Research
National Science Foundation
Deutsche Forschungsgemeinschaft
Fonds De La Recherche Scientifique - FNRS
Earth Observatory of Singapore
Australian Research Council

Statistics


Number of views
25 (5 by ULiège)
Number of downloads
11 (1 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi