atmosphere; general circulation model; global dust storm; Mars; NOMAD; ozone; Dust storm; ExoMars; General circulation model; Global dust storm; Middle atmosphere; Nadir and occultation for mars discovery; Ozone destruction; UV-visible spectrometers; Water vapour; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] The Nadir and Occultation for MArs Discovery (NOMAD)/UV-visible (UVIS) spectrometer on the ExoMars Trace Gas Orbiter provided observations of ozone (O3) and water vapor in the global dust storm of 2018. Here we show in detail, using advanced data filtering and chemical modeling, how Martian O3 in the middle atmosphere was destroyed during the dust storm. In data taken exactly 1 year later when no dust storm occurred, the normal situation had been reestablished. The model simulates how water vapor is transported to high altitudes and latitudes in the storm, where it photolyzes to form odd hydrogen species that catalyze O3. O3 destruction is simulated at all latitudes and up to 100 km, except near the surface where it increases. The simulations also predict a strong increase in the photochemical production of atomic hydrogen in the middle atmosphere, consistent with the enhanced hydrogen escape observed in the upper atmosphere during global dust storms.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Daerden, F. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Neary, L. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Wolff, M.J. ; Space Science Institute, Boulder, United States
Clancy, R.T. ; Space Science Institute, Boulder, United States
Lefèvre, F. ; LATMOS, Sorbonne Université, UVSQ Université Paris-Saclay, CNRS, Paris, France
Whiteway, J.A. ; Centre for Research in Earth and Space Science, York University, Toronto, Canada
Viscardy, S. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Piccialli, A. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Willame, Y.; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Depiesse, C. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Aoki, S. ; Institute of Space and Astronautical Science ISAS, Japan Aerospace Exploration Agency JAXA, Sagamihara, Japan
Thomas, I.R. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Ristic, B. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Erwin, J. ; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Sandor, B.J. ; Space Science Institute, Boulder, United States
Khayat, A. ; NASA Goddard Space Flight Center, Greenbelt, United States
Smith, M.D.; NASA Goddard Space Flight Center, Greenbelt, United States
Mason, J.P.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Patel, M.R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Villanueva, G.L. ; NASA Goddard Space Flight Center, Greenbelt, United States
Liuzzi, G. ; NASA Goddard Space Flight Center, Greenbelt, United States ; Department of Physics, School of Arts and Sciences, American University, Washington, United States
Bellucci, G.; Istituto di Astrofisica e Planetologia Spaziali, IAPS-INAF, Rome, Italy
Lopez-Moreno, J.-J.; Instituto de Astrofisica de Andalucia, IAA-CSIC, Granada, Spain
Vandaele, A.C.; Royal Belgian Institute for Space Aeronomy BIRA-IASB, Brussels, Belgium
Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. (2019). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124(12), 3482–3497. https://doi.org/10.1029/2019JE006109
Chaffin, M. S., Kass, D. M., Aoki, S., Fedorova, A. A., Deighan, J., Connour, K., et al. (2021). Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 5(10), 1036–1042. https://doi.org/10.1038/s41550-021-01425-w
Clancy, R. T., & Nair, H. (1996). Annual (perihelion–aphelion) cycles in the photochemical behavior of the global Mars atmosphere. Journal of Geophysical Research, 101(E5), 12785–12790. https://doi.org/10.1029/96je00836
Clancy, R. T., Wolff, M. J., Lefevre, F., Cantor, B. A., Malin, M. C., & Smith, M. D. (2016). Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus, 266, 112–133. https://doi.org/10.1016/j.icarus.2015.11.016
Daerden, F., Neary, L., Villanueva, G., Liuzzi, G., Aoki, S., Clancy, R. T., et al. (2022). Explaining NOMAD D/H observations by cloud-induced fractionation of water vapor on Mars. Journal of Geophysical Research: Planets, 127(2), e2021JE007079. https://doi.org/10.1029/2021JE007079
Daerden, F., Neary, L., Viscardy, S., García Muñoz, A., Clancy, R. T., Smith, M. D., et al. (2019). Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus, 326, 197–224. https://doi.org/10.1016/j.icarus.2019.02.030
Daerden, F., & Wolff, M. J. (2022). NOMAD/UVIS ozone retrievals and GEM-Mars GCM simulations of ozone on Mars during the 2018 global dust storm and one year later, for Daerden et al., [Data set]. Royal Belgian Institute for Space Aeronomy (BIRA-IASB). https://doi.org/10.18758/71021070
Fedorova, A., Bertaux, J.-L., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., & Clarke, J. (2018). Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus, 300, 440–457. https://doi.org/10.1016/j.icarus.2017.09.025
Fedorova, A., Montmessin, F., Korablev, O., Lefevre, F., Trokhimovskiy, A., & Bertaux, J. L. (2021). Multi-annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars Express. Journal of Geophysical Research: Planets, 126(1), e2020JE006616. https://doi.org/10.1029/2020JE006616
Fedorova, A. A., Montmessin, F., Korablev, O., Luginin, M., Trokhimovskiy, A., Belyaev, D. A., et al. (2020). Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 367(6475), 297–300. https://doi.org/10.1126/science.aay9522
Gérard, J.-C., Aoki, S., Willame, Y., Gkouvelis, L., Depiesse, C., Thomas, I. R., et al. (2020). Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 4(11), 1049–1052. https://doi.org/10.1038/s41550-020-1123-2
Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., et al. (2018). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2, 126–132. https://doi.org/10.1038/s41550-017-0353-4
Khayat, A. S. J., Smith, M. D., Wolff, M., Daerden, F., Neary, L., Patel, M. R., et al. (2021). ExoMars TGO/NOMAD-UVIS vertical profiles of ozone: 2. The high-altitude layers of atmospheric ozone. Journal of Geophysical Research: Planets, 126(11), e2021JE006834. https://doi.org/10.1029/2021JE006834
Korablev, O., Vandaele, A. C., Montmessin, F., Fedorova, A. A., Trokhimovskiy, A., Forget, F., et al. (2019). No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 568(7753), 517–520. https://doi.org/10.1038/s41586-019-1096-4
Korablev, O. I., Montmessin, F., Trokhimovskiy, A., Fedorova, A. A., Shakun, A. V., Grigoriev, A. V., et al. (2018). The atmospheric chemistry suite (ACS) of three spectrometers for the ExoMars 2016 trace gas orbiter. Space Science Reviews, 214(1), 7. https://doi.org/10.1007/s11214-017-0437-6
Lebonnois, S., Quemerais, E., Montmessin, F., Lefevre, F., Perrier, S., Bertaux, J. L., & Forget, F. (2006). Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. Journal of Geophysical Research, 111(E9), E09S05. https://doi.org/10.1029/2005JE002643
Lefèvre, F., Lebonnois, S., Montmessin, F., & Forget, F. (2004). Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research, 109(E7), E07004. https://doi.org/10.1029/2004JE002268
Lefèvre, F., Trokhimovskiy, A., Fedorova, A., Baggio, L., Lacombe, G., Maattanen, A., et al. (2021). Relationship between the ozone and water vapour columns on Mars as observed by SPICAM and calculated by a global climate model. Journal of Geophysical Research: Planets, 126(4), e2021JE006838. https://doi.org/10.1029/2021JE006838
Markwardt, C. (2009). Non-linear least squares fitting in IDL with MPFIT. In Astronomical Data Analysis Software and Systems XVIII ASP Conference Series, In D. A. Bohlender, D. Durand, & P. Dowler (Eds.) (Vol. 411) 251. Astronomical Society of the Pacific. Retrieved from https://arxiv.org/abs/0902.2850
McElroy, M. B., & Donahue, T. M. (1972). Stability of the Martian atmosphere. Science, 177(4053), 986–988. https://doi.org/10.1126/science.177.4053.986
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., et al. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
Montabone, L., Spiga, A., Kass, D. M., Kleinböhl, A., Forget, F., & Millour, E. (2020). Martian year 34 column dust climatology from Mars climate sounder observations: Reconstructed maps and model simulations. Journal of Geophysical Research: Planets, 125(8). https://doi.org/10.1029/2019JE006111
Montmessin, F., Korablev, O., Lefevre, F., Bertaux, J. L., Fedorova, A., Trokhimovskiy, A., et al. (2017). SPICAM on Mars express: A 10 year in-depth survey of the Martian atmosphere. Icarus, 297, 195–216. https://doi.org/10.1016/j.icarus.2017.06.022
Montmessin, F., & Lefèvre, F. (2013). Transport-driven formation of a polar ozone layer on Mars. Nature Geoscience, 6(11), 930–933. https://doi.org/10.1038/ngeo1957
Neary, L., & Daerden, F. (2018). The GEM-Mars general circulation model for Mars: Description and evaluation. Icarus, 300, 458–476. https://doi.org/10.1016/j.icarus.2017.09.028
Neary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., et al. (2020). Explanation for the increase in high-altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophysical Research Letters, 47(7), e2019GL084354. https://doi.org/10.1029/2019GL084354
Olsen, K. S., Lefèvre, F., Montmessin, F., Trokhimovskiy, A., Baggio, L., Fedorova, A., et al. (2020). First detection of ozone in the mid-infrared at Mars: Implications for methane detection. Astronomy & Astrophysics, 639, A141. https://doi.org/10.1051/0004-6361/202038125
Parkinson, T. D., & Hunten, D. M. (1972). Spectroscopy and aeronomy of O2 on Mars. Journal of the Atmospheric Sciences, 29(7), 1380–1390. https://doi.org/10.1175/1520-0469(1972)029<1380:saaooo>2.0.co;2
Patel, M. R., Antoine, P., Mason, J., Leese, M., Hathi, B., Stevens, A. H., et al. (2017). NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 2—Design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 56(10), 2771–2782. https://doi.org/10.1364/AO.56.002771
Patel, M. R., Sellers, G., Mason, J. P., Holmes, J. A., Brown, M. A. J., Lewis, S. R., et al. (2021). ExoMars TGO/NOMAD-UVIS vertical profiles of ozone: 1. Seasonal variation and comparison to water. Journal of Geophysical Research: Planets, 126(11), e2021JE006837. https://doi.org/10.1029/2021JE006837
Perrier, S., Bertaux, J. L., Lefevre, F., Lebonnois, S., Korablev, O., Fedorova, A., & Montmessin, F. (2006). Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. Journal of Geophysical Research, 111(E9), E09S06. https://doi.org/10.1029/2006JE002681
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding. World Science.238
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., et al. (2011). Chemical kinetics and photochemical data for use in atmospheric studies. Technical Report Evaluation No 17, Publication 10-6. Jet Propulsion Laboratory. Retrieved from http://jpldataeval.jpl.nasa.gov
Shaposhnikov, D. S., Medvedev, A. S., & Rodin, A. V. (2021). Simulation of water vapor photodissociation during dust storm season on Mars. Solar System Research, 56(1), 23–31. https://doi.org/10.1134/s0038094622010051
Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., et al. (1999). The global topography of Mars and implications for surface evolution. Science, 284(5419), 1495–1503. https://doi.org/10.1126/science.284.5419.1495
Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167(1), 148–165. https://doi.org/10.1016/j.icarus.2003.09.010
Smith, M. D. (2019). THEMIS observations of the 2018 Mars global dust storm. Journal of Geophysical Research: Planets, 124(11), 2929–2944. https://doi.org/10.1029/2019JE006107
Smith, M., Daerden, F., Neary, L., & Khayat, S. (2018). The climatology of carbon monoxide and water vapour on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus, 301, 117–131. https://doi.org/10.1016/j.icarus.2017.09.027
Stcherbinine, A., Vincendon, M., Montmessin, F., Wolff, M. J., Korablev, O., Fedorova, A., et al. (2020). Martian water ice clouds during the 2018 global dust storm as observed by the ACS-MIR channel onboard the Trace Gas Orbiter. Journal of Geophysical Research: Planets, 125(3), e2019JE006300. https://doi.org/10.1029/2019JE006300
Stone, S. W., Yelle, R. V., Benna, M., Lo, D. Y., Elrod, M. K., & Mahaffy, P. R. (2020). Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370(6518), 824–831. https://doi.org/10.1126/science.aba5229
Trokhimovskiy, A., Fedorova, A., Korablev, O., Montmessin, F., Bertaux, J. L., Rodin, A., & Smith, M. D. (2015). Mars’ water vapour mapping by the SPICAM IR spectrometer: Five Martian years of observations. Icarus, 251, 50–64. https://doi.org/10.1016/j.icarus.2014.10.007
Vandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., et al. (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568(7753), 521–525. https://doi.org/10.1038/s41586-019-1097-3
Vandaele, A. C., Lopez-Moreno, J. J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: Technical description, science objectives and expected performance. Space Science Reviews, 214(5), 80. https://doi.org/10.1007/s11214-018-0517-2
Willame, Y., Vandaele, A., Depiesse, C., Lefevre, F., Letocart, V., Gillotay, D., & Montmessin, F. (2017). Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra. Planetary and Space Science, 142, 9–25. https://doi.org/10.1016/j.pss.2017.04.011
Yiğit, E. (2021). Martian water escape and internal waves. Science, 374(6573), 1323–1324. https://doi.org/10.1126/science.abg5893