[en] Aim: Species distribution models have become important tools for studying changes in biodiversity. Most studies use these models to evaluate the impact of global changes on biodiversity. For that purpose, scenarios are used that are based on changes in land use and/or land cover, or on climatic changes. However, the temporal transferability of such models depends heavily on modeling methods, environmental predictors and the ecological traits of species. Here, we evaluate the power of modeling tools to predict changes in bird species abundances based on observed changes in land cover.
Location: Wallonia, Belgium
Methods: To assess this temporal transferability, this research makes use of two biological and two environmental datasets, both sampled with a 10-year interval. This allows us to compare the predictions of models for another period than the period used to fit the models, with actual values for species abundance. We also analyzed the impact of ecological traits on the temporal transferability. Generalized additive models were fitted for 75 breeding birds. While a lot of studies use occurrence data, we used abundance data for fitting models. Abundance data contains more information and should allow us to better capture abundance changes in bird populations.
Results: For the majority of species studied, the results show a low temporal transferability. With a few exceptions, e.g., species with softwood habitats, predicted changes do not correspond to observed changes. For certain bird species, e.g., those on arable lands, we observed an increase in predicted abundances in the future, while these species actually decreased. Few ecological traits seem to significantly impact the models’ transferability.
Main conclusions: Our findings show that it is difficult to predict abundance changes of bird species based only on land cover changes. It is necessary to add other predictors into the models, e.g., predictors of habitat quality or spatial configuration.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Coppee, Thomas ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Paquet, Jean-Yves
Titeux, Nicolas
Dufrêne, Marc ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Language :
English
Title :
Temporal transferability of species abundance models to study the changes of breeding bird species based on land cover changes
Barras, A.G., Braunisch, V., Arlettaz, R., Predictive models of distribution and abundance of a threatened mountain species show that impacts of climate change overrule those of land use change. Diver. Distrib., 2021, 10.1111/ddi.13247 ddi.13247.
Beaumont, L.J., Graham, E., Duursma, D.E., Wilson, P.D., Cabrelli, A., Baumgartner, J.B., VanDerWal, J., Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?. Ecol. Modell., 342, 2016, 135‑146, 10.1016/j.ecolmodel.2016.10.004.
Bennett, E.M., Cramer, W., Begossi, A., Cundill, G., Díaz, S., Egoh, B.N., Woodward, G., Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain., 14, 2015, 76‑85, 10.1016/j.cosust.2015.03.007.
BirdLife Data Zone. (s. d.). Consulté 20 août 2020, à l'adresse http://datazone.birdlife.org/home.
Boatman, N.D., Brickle, N.W., Hart, J.D., Milsom, T.P., Morris, A.J., Murray, A.W.A., Robertson, P.A., Evidence for the indirect effects of pesticides on farmland birds. Ibis, 146(s2), 2004, 131‑143, 10.1111/j.1474-919X.2004.00347.x.
Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J.P.W., Almond, R.E.A., Watson, R., Global biodiversity: indicators of recent declines. Science, 328(5982), 2010, 1164‑1168, 10.1126/science.1187512.
Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., Palmer, T.M., Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv., 1(5), 2015, e1400253, 10.1126/sciadv.1400253.
Chamberlain, D.E., Siriwardena, G.M., The effects of agricultural intensification on Skylarks(Alauda arvensis): evidence from monitoring studies in Great Britain. Environ. Rev. (Ottawa, Canada), 2000, 10.1139/a00-007.
Dobrowski, S.Z., Thorne, J.H., Greenberg, J.A., Safford, H.D., Mynsberge, A.R., Crimmins, S.M., Swanson, A.K., Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits. Ecol. Monogr., 81(2), 2011, 241‑257, 10.1890/10-1325.1.
Donald, P.F., Green, R.E., Heath, M.F., Agricultural intensification and the collapse of Europe's farmland bird populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268, 2001, 25‑29, 10.1098/rspb.2000.1325.
Drapeau, P., Villard, M.-.A., Leduc, A., Hannon, S.J., Natural disturbance regimes as templates for the response of bird species assemblages to contemporary forest management. Divers. Distrib., 22(4), 2016, 385‑399, 10.1111/ddi.12407.
Duque-Lazo, J., van Gils, H., Groen, T.A., Navarro-Cerrillo, R.M., Transferability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Modell., 320, 2016, 62‑70, 10.1016/j.ecolmodel.2015.09.019.
Elith, J., Leathwick, J.R., Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst., 40(1), 2009, 677‑697, 10.1146/annurev.ecolsys.110308.120159.
Estrada, A., Delgado, M.P., Arroyo, B., Traba, J., Morales, M.B., Forecasting large-scale habitat suitability of european bustards under climate change: the role of environmental and geographic variables. PLoS One, 11(3), 2016, e0149810, 10.1371/journal.pone.0149810.
Fern, R.R., Morrison, M.L., Wang, H.-.H., Grant, W.E., Campbell, T.A., Incorporating biotic relationships improves species distribution models: modeling the temporal influence of competition in conspecific nesting birds. Ecol. Modell., 408, 2019, 108743, 10.1016/j.ecolmodel.2019.108743.
Fonderflick, J., Lepart, J., Caplat, P., Debussche, M., Marty, P., Managing agricultural change for biodiversity conservation in a Mediterranean upland. Biol. Conserv., 143(3), 2010, 737‑746, 10.1016/j.biocon.2009.12.014.
Gregory, R.D., Willis, S.G., Jiguet, F., Voříšek, P., Klvaňová, A., van Strien, A., Green, R.E., An indicator of the impact of climatic change on European bird populations. PLoS One, 4(3), 2009, e4678, 10.1371/journal.pone.0004678.
Guisan, A., Zimmermann, N.E., Predictive habitat distribution models in ecology. Ecol. Modell., 135(2‑3), 2000, 147‑186, 10.1016/S0304-3800(00)00354-9.
Hagemeijer, W.J.M., Blair, M.J., The EBCC Atlas of European Breeding Birds: Their distribution and Abundance. 1997, T & A.D. Poyser, London.
Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., de Kroon, H., More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 12(10), 2017, e0185809, 10.1371/journal.pone.0185809.
Howard, C., Stephens, P.A., Pearce-Higgins, J.W., Gregory, R.D., Willis, S.G., Improving species distribution models: the value of data on abundance. Methods Ecol. Evol., 5(6), 2014, 506‑513, 10.1111/2041-210X.12184.
Inger, R., Gregory, R., Duffy, J.P., Stott, I., Voříšek, P., Gaston, K.J., Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett., 18(1), 2015, 28‑36, 10.1111/ele.12387.
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo, 2019, 10.5281/zenodo.3831674.
Jacob, J.-.P., Dehem, C., Dambiermont, J.-.L., Fasol, M., Kinet, T., van der Elst, D., Paquet, J.-.Y., Atlas Des Oiseaux Nicheurs De Wallonie 2001-2007. 2010, Aves et Région wallonne, Gembloux.
Johnston, A., Moran, N., Musgrove, A., Fink, D., Baillie, S.R., Estimating species distributions from spatially biased citizen science data. Ecol. Modell., 422, 2020, 108927, 10.1016/j.ecolmodel.2019.108927.
Keller, V., Herrando, S., Voříšek, P., Franch, M., Kipson, M., Milanesi, P., Foppen, R.P.B., European Breeding Bird Atlas 2. Distribution, Abundance and Change (European Bird Census Council (EBCC)), 2020 https://www.lynxeds.com/product/european-breeding-bird-atlas-2-distribution-abundance-and-change/.
Le Viol, I., Jiguet, F., Brotons, L., Herrando, S., Lindström, Å., Pearce-Higgins, J.W., Devictor, V., More and more generalists: two decades of changes in the European avifauna. Biol. Lett., 8, 2012, 708‑782, 10.1098/rsbl.2012.0496.
Mace, G.M., Norris, K., Fitter, A.H., Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. (Amst.), 27(1), 2012, 19‑26, 10.1016/j.tree.2011.08.006.
Marshall, L., Biesmeijer, J.C., Rasmont, P., Vereecken, N.J., Dvorak, L., Fitzpatrick, U., Dendoncker, N., The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Chang. Biol., 24(1), 2018, 101‑116, 10.1111/gcb.13867.
Matern, A., Drees, C., Kleinwächter, M., Assmann, T., Habitat modelling for the conservation of the rare ground beetle species Carabus variolosus (Coleoptera, Carabidae) in the riparian zones of headwaters. Biol. Conserv., 136(4), 2007, 618‑627, 10.1016/j.biocon.2007.01.006.
Maxwell, S.L., Fuller, R.A., Brooks, T.M., Watson, J.E.M., Biodiversity: the ravages of guns, nets and bulldozers. Nat. News, 536(7615), 2016, 143, 10.1038/536143a.
Milanesi, P., Herrando, S., Pla, M., Villero, D., & Keller, V. (2017). Towards continental bird distribution models: environmental variables for the second European breeding bird atlas and identification of priorities for further surveys. 8.
Mineau, P., Whiteside, M., Pesticide acute toxicity is a better correlate of U.S. grassland bird declines than agricultural intensification. PLoS One, 8(2), 2013, e57457, 10.1371/journal.pone.0057457.
Morán-Ordóñez, A., Lahoz-Monfort, J.J., Elith, J., Wintle, B.A., Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions?: temporal transferability of species distribution model predictions. Global Ecol. Biogeogr., 26(3), 2017, 371‑384, 10.1111/geb.12545.
Muñoz, A.-.R., Jiménez-Valverde, A., Márquez, A.L., Moleón, M., Real, R., Environmental favourability as a cost-efficient tool to estimate carrying capacity. Divers. Distrib., 21(12), 2015, 1388‑1400, 10.1111/ddi.12352.
Newbold, T., Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B, 285, 2018, 10.1098/rspb.2018.0792 188120180792.
Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Purvis, A., Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 2015, 45‑50, 10.1038/nature14324.
Oppel, S., Meirinho, A., Ramírez, I., Gardner, B., O'Connell, A.F., Miller, P.I., Louzao, M., Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol. Conserv., 156, 2012, 94‑104, 10.1016/j.biocon.2011.11.013.
Peterson, A.T., Ortega-Huerta, M.A., & Bartley, J. (2002). Future projections for Mexican faunas under global climate change scenarios. 416, 4.
Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C., Guisan, A., Selecting predictors to maximize the transferability of species distribution models: lessons from cross-continental plant invasions: which predictors increase the transferability of SDMs?. Global Ecol. Biogeogr., 26(3), 2017, 275‑287, 10.1111/geb.12530.
Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., How to evaluate models: observed vs. predicted or predicted vs. observed?. Ecol. Modell., 216(3‑4), 2008, 316‑322, 10.1016/j.ecolmodel.2008.05.006.
Powers, R.P., Jetz, W., Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang., 9(4), 2019, 323‑329, 10.1038/s41558-019-0406-z.
Radoux, J., Bourdouxhe, A., Coos, W., Dufrêne, M., Defourny, P., Improving ecotope segmentation by combining topographic and spectral data. Remote Sens. (Basel), 11(3), 2019, 354, 10.3390/rs11030354.
Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J.P., Domínguez, J., Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Sci. Rep., 9(1), 2019, 4221, 10.1038/s41598-019-40766-5.
Regos, A., Imbeau, L., Desrochers, M., Leduc, A., Robert, M., Jobin, B., Drapeau, P., Hindcasting the impacts of land-use changes on bird communities with species distribution models of Bird Atlas data. Ecol. Appl., 28(7), 2018, 1867‑1883, 10.1002/eap.1784.
Robinson, R.A., Sutherland, W.J., Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol., 39(1), 2002, 157‑176, 10.1046/j.1365-2664.2002.00695.x.
Rosenberg, K.V., Dokter, A.M., Blancher, P.J., Sauer, J.R., Smith, A.C., Smith, P.A., Marra, P.P., Decline of the North American avifauna. Science, 366(6461), 2019, 120‑124, 10.1126/science.aaw1313.
Sánchez-Bayo, F., Wyckhuys, K.A.G., Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv., 232, 2019, 8‑27, 10.1016/j.biocon.2019.01.020.
Santini, L., Benítez-López, A., Maiorano, L., Čengić, M., Huijbregts, M.A.J., Assessing the reliability of species distribution projections in climate change research. Divers. Distrib., 2021, 10.1111/ddi.13252 ddi.13252.
Species selection and classification. (s. d.). Consulté 14 décembre 2020, à l'adresse PECBMS website: https://pecbms.info/methods/pecbms-methods/3-multispecies-indicators/species-selection-and-classification/.
Storchová, L., Hořák, D., Life-history characteristics of European birds. Global Ecol. Biogeogr., 27(4), 2018, 400‑406, 10.1111/geb.12709.
Strauss, B., Biedermann, R., Evaluating temporal and spatial generality: how valid are species–habitat relationship models?. Ecol. Modell., 204(1‑2), 2007, 104‑114, 10.1016/j.ecolmodel.2006.12.027.
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Williams, S.E., Extinction risk from climate change. Nature, 427, 2004, 4.
Titeux, N., Henle, K., Mihoub, J.-.B., Regos, A., Geijzendorffer, I.R., Cramer, W., Brotons, L., Biodiversity scenarios neglect future land-use changes. Glob. Chang. Biol., 22(7), 2016, 2505‑2515, 10.1111/gcb.13272.
Valavi, R., Elith, J., Lahoz-Monfort, J.J., Guillera-Arroita, G., BLOCKCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol., 10(2), 2019, 225‑232, 10.1111/2041-210X.13107.
Wenger, S.J., Olden, J.D., Assessing transferability of ecological models: an underappreciated aspect of statistical validation: model transferability. Methods Ecol. Evol., 3(2), 2012, 260‑267, 10.1111/j.2041-210X.2011.00170.x.
Wogan, G.O.U., Life history traits and niche instability impact accuracy and temporal transferability for historically calibrated distribution models of North American birds. PLoS One, 11(3), 2016, e0151024, 10.1371/journal.pone.0151024.
Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, K., Randin, C.F., Parnell, S., Sequeira, A.M.M., Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. (Amst.), 33(10), 2018, 790‑802, 10.1016/j.tree.2018.08.001.
Zhang, C., Chen, Y., Xu, B., Xue, Y., Ren, Y., Temporal transferability of marine distribution models in a multispecies context. Ecol. Indic., 9, 2020.