[en] Membrane fouling and biofouling, which arises from the nonspecific interaction between the membrane surface and foulants, significantly impedes the efficient application of membrane technology. The addition of nanoparticles could have an impact on the properties of membranes used for nanofiltration. Nanoparticles can provide various functionalities to a membrane but, there are very few studies of the effect of mixing catalysts in PDA-modified membranes. In this study, polydopamine has been used to firmly bind a combination of nanoparticles on thin film composite (TFC) membranes. Two simple methods (a one-step and a two-step method) to assemble a multifunctional (TiO2, ZnO) layer of nanoparticles onto a commercial NF membrane as support have been evaluated by applying fast deposition of polydopamine (PDA). The membrane performance was evaluated based on the relative flux decline. Results show that the modification methods did not compromise the rejection of MgSO4, combined with an increase ∼15% in the rejection of NaCl. A 25% increase in the hydrophilicity of the modified membranes compared to pristine membrane was evidenced. In addition, the two-step modification method has antimicrobial activity for an ultralow load of 0.03 wt% ZnO nanoparticles; the antimicrobial activity increased when the membrane had a combination of TiO2:ZnO nanoparticles at 1:2 and 2:1 ratios using Bacillus Subtilis as model bacteria. The photocatalytic activity of the nanoparticles layer was demonstrated through the removal of methylene blue from a solution contacting the membrane when exposed to solar radiation.
Disciplines :
Chemistry
Author, co-author :
Bahamonde Soria, Raúl; Renewable Energy Laboratory, Faculty of Chemical Sciences, Central University of Ecuador, Quito, Ecuador ; Materials & Process Engineering (iMMC-IMAP), UCLouvain, Louvain-la-Neuve, Belgium
Zhu, Junyong; School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China ; Department of Chemical Engineering, KU Leuven, Leuven, Belgium
Gonza Quito, Irma Elizabeth ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Gestion de la qualité dans la chaîne alimentaire
Van der Bruggen, Bart; Department of Chemical Engineering, KU Leuven, Leuven, Belgium
Luis, Patricia; Materials & Process Engineering (iMMC-IMAP), UCLouvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
Effect of (TiO2: ZnO) ratio on the anti-fouling properties of bio-inspired nanofiltration membranes
ARES - Académie de Recherche et d'Enseignement Supérieur
Funding text :
The authors acknowledge the support provided by I ́Académie de Recherche et d ́Enseignemetn Supérieur (ARES) and Central University of Ecuador for financially supporting this work ( RFCQ-CQ-SO13-186-2017 ). The authors greatly thanks Laurence Ryelandt from pole Materials and Processes Engineering (IMAP) UCLouvain, for the SEM and EDX measurements.
Bellona, C., Drewes, J.E., Xu, P., Amy, G., Factors affecting the rejection of organic solutes during NF/RO treatment - A literature review. Water Res. 38 (2004), 2795–2809, 10.1016/j.watres.2004.03.034.
Mohammad, A.W., Ali, N., Understanding the steric and charge contributions in NF membranes using increasing MWCO polyamide membranes. Desalination 147 (2002), 205–212, 10.1016/S0011-9164(02)00535-0.
Fu, F., Wang, Q., Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92 (2011), 407–418, 10.1016/j.jenvman.2010.11.011.
Vrijenhoek, E.M., Hong, S., Elimelech, M., Influence of membrane properties, solution chemistry, and hydrodynamics on colloidal fouling of reverse osmosis and nanofiltration membranes. J. Memb. Sci. 188 (2001), 115–128.
Khulbe, K.C., Matsuura, T., Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review. Polymer (Guildf). 41 (2000), 1917–1935, 10.1016/S0032-3861(99)00359-6.
Ivnitsky, H., Minz, D., Kautsky, L., Preis, A., Ostfeld, A., Semiat, R., Dosoretz, C.G., Biofouling formation and modeling in nanofiltration membranes applied to wastewater treatment. J. Memb. Sci. 360 (2010), 165–173, 10.1016/j.memsci.2010.05.007.
Ivnitsky, H., Katz, I., Minz, D., Shimoni, E., Chen, Y., Tarchitzky, J., Semiat, R., Dosoretz, C.G., Characterization of membrane biofouling in nanofiltration processes of wastewater treatment. Desalination 185 (2005), 255–268, 10.1016/j.desal.2005.03.081.
Choudhury, R.R., Gohil, J.M., Mohanty, S., Nayak, S.K., Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. J. Mater. Chem. A 6 (2018), 313–333, 10.1039/c7ta08627j.
Abid, H.S., Johnson, D.J., Hashaikeh, R., Hilal, N., A review of efforts to reduce membrane fouling by control of feed spacer characteristics. Desalination 420 (2017), 384–402, 10.1016/j.desal.2017.07.019.
Ding, Y.H., Floren, M., Tan, W., Mussel-inspired polydopamine for bio-surface functionalization. Biosurface Biotribol. 2 (2016), 121–136, 10.1016/j.bsbt.2016.11.001.
Karkhanechi, H., Takagi, R., Matsuyama, H., Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization. Desalination 337 (2014), 23–30, 10.1016/j.desal.2014.01.007.
Kasemset, S., Lee, A., Miller, D.J., Freeman, B.D., Sharma, M.M., Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J. Memb. Sci. 425–426 (2013), 208–216, 10.1016/j.memsci.2012.08.049.
Kim, K.Y., Yang, E., Lee, M.Y., Chae, K.J., Kim, C.M., Kim, I.S., Polydopamine coating effects on ultrafiltration membrane to enhance power density and mitigate biofouling of ultrafiltration microbial fuel cells (UF-MFCs). Water Res. 54 (2014), 62–68, 10.1016/j.watres.2014.01.045.
Y. Xiang, F. Liu, L. Xue, Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation, Elsevier, 2015. doi: 10.1016/j.memsci.2014.11.052.
Vaselbehagh, M., Karkhanechi, H., Mulyati, S., Takagi, R., Matsuyama, H., Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process. Desalination 332 (2014), 126–133, 10.1016/j.desal.2013.10.031.
Zhu, J., Uliana, A., Wang, J., Yuan, S., Li, J., Tian, M., Simoens, K., Volodin, A., Lin, J., Bernaerts, K., Zhang, Y., Van Der Bruggen, B., Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles: Via fast bioinspired deposition. J. Mater. Chem. A. 4 (2016), 13211–13222, 10.1039/c6ta05661j.
Homayoonfal, M., Mehrnia, M.R., Mojtahedi, Y.M., Ismail, A.F., Effect of metal and metal oxide nanoparticle impregnation route on structure and liquid filtration performance of polymeric nanocomposite membranes: A comprehensive review. Desalin. Water Treat. 51 (2013), 3295–3316, 10.1080/19443994.2012.749055.
Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., Tiede, D.M., Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B. 106 (2002), 10543–10552, 10.1021/jp021235v.
Dalsin, J.L., Lin, L., Tosatti, S., Vo, J., Textor, M., Messersmith, P.B., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG - DOPA. Langmuir 21 (2005), 640–646.
Rodenstein, M., Zürcher, S., Tosatti, S.G.P., Spencer, N.D., Fabricating chemical gradients on oxide surfaces by means of fluorinated, catechol-based, self-assembled monolayers. Langmuir 26 (2010), 16211–16220, 10.1021/la100805z.
Ye, Q., Zhou, F., Liu, W., Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 40 (2011), 4244–4258, 10.1039/c1cs15026j.
De Filpo, G., Pantuso, E., Armentano, K., Formoso, P., Di Profio, G., Poerio, T., Fontananova, E., Meringolo, C., Mashin, A.I., Nicoletta, F.P., Chemical vapor deposition of photocatalyst nanoparticles on PVDF membranes for advanced oxidation processes. Membranes (Basel)., 8, 2018, 35, 10.3390/membranes8030035.
Yang, H.C., Liao, K.J., Huang, H., Wu, Q.Y., Wan, L.S., Xu, Z.K., Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J. Mater. Chem. A., 2, 2014, 10225, 10.1039/c4ta00143e.
Zhang, R.-X., Braeken, L., Liu, T., Luis, P., Wang, X.-L., Van der Bruggen, B., Remarkable Anti-Fouling performance of TiO2-modified TFC membranes with mussel-inspired polydopamine binding. Appl. Sci., 7, 2017, 81.
Zhang, R.X., Braeken, L., Luis, P., Wang, X.L., Van der Bruggen, B., Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine. J. Memb. Sci. 437 (2013), 179–188, 10.1016/j.memsci.2013.02.059.
Zhu, J., Yuan, S., Uliana, A., Hou, J., Li, J., Li, X., Tian, M., Chen, Y., Volodin, A., Van Der Bruggen, B., High- flux thin film composite membranes for nano filtration mediated by a rapid co-deposition of polydopamine / piperazine. J. Memb. Sci. 554 (2018), 97–108, 10.1016/j.memsci.2018.03.004.
S.R. Lakhotia, M. Mukhopadhyay, P. Kumari, Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite T nanofiltration (NF) membrane for water treatment, 211 (2019) 98–107.
Yang, Z., Wu, Y., Wang, J., Cao, B., Tang, C.Y., In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 50 (2016), 9543–9550, 10.1021/acs.est.6b01867.
Kim, J.H., Park, C.H., Kim, C.S., Joshi, M.K., Lee, J., Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J. Colloid Interface Sci. 513 (2017), 566–574, 10.1016/j.jcis.2017.11.061.
Noshirvani, N., Ghanbarzadeh, B., Reza, M., Hashemi, M., Coma, V., Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int. J. Biol. Macromol. 99 (2017), 530–538 doi: 1037//0033-2909.I26.1.78.
Peyravi, M., Jahanshahi, M., Rahimpour, A., Javadi, A., Hajavi, S., Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem. Eng. J. 241 (2014), 155–166, 10.1016/j.cej.2013.12.024.
Zhao, X., Su, Y., Liu, Y., Zhang, R., Jiang, Z., Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles. J. Memb. Sci. 495 (2015), 226–234, 10.1016/j.memsci.2015.08.026.
Zhu, J., Tilahun, M., Wang, J., Uliana, A., Tian, M., Yuan, S., Li, J., Zhang, Y., Volodin, A., Van Der Bruggen, B., A rapid deposition of polydopamine coatings induced by iron (III) chloride / hydrogen peroxide for loose nanofiltration. J. Colloid Interface Sci. 523 (2018), 86–97, 10.1016/j.jcis.2018.03.072.
Khorshidi, B., Biswas, I., Ghosh, T., Thundat, T., Sadrzadeh, M., Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Sci. Rep., 8, 2018, 784, 10.1038/s41598-017-18724-w.
Soleymani Lashkenari, A., Hamed Mosavian, M.T., Peyravi, M., Jahanshahi, M., Biofouling mitigation of bilayer polysulfone membrane assisted by zinc oxide-polyrhodanine couple nanoparticle. Prog. Org. Coatings. 129 (2019), 147–158, 10.1016/j.porgcoat.2018.12.012.
Q.E. Ambient Secretary, Ambient secretary government of Quito Ecuador, 2018. http://www.quitoambiente.gob.ec/ambiente/index.php/radiacion-ultravioleta-app.
Rajamanickam, D., Shanthi, M., Photocatalytic degradation of an organic pollutant, 4-nitrophenol by zinc oxide - UV process. Res. J. Chem. Environ. 9 (2012), S1858–S1868.
Hong, S., Na, Y.S., Choi, S., Song, I.T., Kim, W.Y., Lee, H., Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 22 (2012), 4711–4717, 10.1002/adfm.201201156.
Ball, V., Polydopamine films and particles with catalytic activity. Catal. Today. 301 (2018), 196–203, 10.1016/j.cattod.2017.01.031.
Liu, Z., Hu, Y., Liu, C., Zhou, Z., Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties. Chem. Commun. 52 (2016), 12245–12248, 10.1039/c6cc06015c.
F. Bernsmann, V. Ball, F. Addiego, A. Ponche, M. Michel, J.J. de A. Gracio, V. Toniazzo, D. Ruch, Dopamine−Melanin film deposition depends on the used oxidant and buffer solution, Langmuir 27 (2011) 2819–2825. doi: 10.1021/la104981s.
Guvendiren, M., Messersmith, P.B., Shull, K.R., Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9 (2008), 122–128, 10.1021/bm700886b.
Ran, J., He, M., Li, W., Cheng, D., Wang, X., Growing ZnO nanoparticles on polydopamine-templated cotton fabrics for durable antimicrobial activity and UV protection. Polymers (Basel), 10, 2018, 495, 10.3390/polym10050495.
Ou, J., Wang, J., Zhang, D., Zhang, P., Liu, S., Yan, P., Liu, B., Yang, S., Fabrication and biocompatibility investigation of TiO 2 films on the polymer substrates obtained via a novel and versatile route. Colloids Surfaces B Biointerfaces 76 (2010), 123–127, 10.1016/j.colsurfb.2009.10.024.
Koch, K., Barthlott, W., Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367 (2009), 1487–1509, 10.1098/rsta.2009.0022.
Cui, J., Zhou, Z., Xie, A., Meng, M., Cui, Y., Liu, S., Lu, J., Zhou, S., Yan, Y., Dong, H., Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Sep. Purif. Technol. 209 (2019), 434–442, 10.1016/j.seppur.2018.03.054.
Yun, S.H., Ingole, P.G., Kim, K.H., Choi, W.K., Kim, J.H., Lee, H.K., Properties and performances of polymer composite membranes correlated with monomer and polydopamine for flue gas dehydration by water vapor permeation. Chem. Eng. J. 258 (2014), 348–356, 10.1016/j.cej.2014.07.038.
Mansouri, J., Harrisson, S., Chen, V., Strategies for controlling biofouling in membrane filtration systems: Challenges and opportunities. J. Mater. Chem. 20 (2010), 4567–4586, 10.1039/b926440j.
Sotto, A., Boromand, A., Zhang, R., Luis, P., Arsuaga, J.M., Kim, J., Van der Bruggen, B., Effect of nanoparticle aggregation at low concentrations of TiO 2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO 2 membranes. J. Colloid Interface Sci. 363 (2011), 540–550, 10.1016/j.jcis.2011.07.089.
Watanabe, T., Nakajima, A., Wang, R., Minabe, M., Koizumi, S., Fujishima, A., Hashimoto, K., Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films. 351 (1999), 260–263, 10.1016/s0040-6090(99)00205-9.
Ang, M.B.M.Y., Trilles, C.A., De Guzman, M.R., Pereira, J.M., Aquino, R.R., Huang, S.H., Hu, C.C., Lee, K.R., Lai, J.Y., Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles. Sep. Purif. Technol. 224 (2019), 113–120, 10.1016/j.seppur.2019.05.018.
Zangeneh, H., Akbar, A., Zinadini, S., Feyzi, M., Bahnemann, D.W., A novel photocatalytic self-cleaning PES nano fi ltration membrane incorporating triple metal-nonmetal doped TiO 2 (K-B-N-TiO 2) for post treatment of biologically treated palm oil mill e ffl uent. React. Funct. Polym. 127 (2018), 139–152.
Ng, L.Y., Leo, C.P., Mohammad, A.W., Optimizing the incorporation of silica nanoparticles in polysulfone/poly(vinyl alcohol) membranes with response surface methodology law. J. Appl. Polym. Sci. 121 (2011), 1804–1814, 10.1002/app.33628.
Lakshmi Prasanna, V., Vijayaraghavan, R., Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO. Mater. Sci. Eng. C. 77 (2017), 1027–1034, 10.1016/j.msec.2017.03.280.
Feris, K., Otto, C., Tinker, J., Wingett, D., Punnoose, A., Thurber, A., Kongara, M., Sabetian, M., Quinn, B., Hanna, C., Pink, D., Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium pseudomonas aeruginosa PAO1. Langmuir. 26 (2010), 4429–4436, 10.1021/la903491z.
Zhang, W., Rittmann, B., Chen, Y., Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ. Sci. Technol. 45 (2011), 2172–2178, 10.1021/es103376y.
Parak, W.J., Rojo, T., Fromm, K.M., de Larramendi, I.R., Hajipour, M.J., Mahmoudi, M., Serpooshan, V., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Antibacterial properties of nanoparticles. Trends Biotechnol. 30 (2012), 499–511, 10.1016/j.tibtech.2012.06.004.
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D., Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7 (2015), 219–242, 10.1007/s40820-015-0040-x.
Hairom, N.H.H., Mohammad, A.W., Kadhum, A.A.H., Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Sep. Purif. Technol. 137 (2014), 74–81, 10.1016/j.seppur.2014.09.027.
Senthilraja, A., Krishnakumar, B., Hariharan, R., Sobral, A.J.F.N., Surya, C., John, N.A.A., Shanthi, M., Synthesis and characterization of bimetallic nanocomposite and its photocatalytic, antifungal and antibacterial activity. Sep. Purif. Technol. 202 (2018), 373–384, 10.1016/j.seppur.2018.04.015.
Adams, L.K., Lyon, D.Y., Alvarez, P.J.J., Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40 (2006), 3527–3532, 10.1016/j.watres.2006.08.004.
Yalcinkaya, F., Lubasova, D., Quantitative evaluation of antibacterial activities of nanoparticles (ZnO, TiO2, ZnO/TiO2, SnO2, CuO, ZrO2, and AgNO3) incorporated into polyvinyl butyral nanofibers. Polym. Adv. Technol. 28 (2017), 137–140, 10.1002/pat.3883.
Talebian, N., Amininezhad, S.M., Doudi, M., Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B Biol. 120 (2013), 66–73, 10.1016/j.jphotobiol.2013.01.004.
Soltani, T., Entezari, M.H., Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J. Mol. Catal. A Chem. 377 (2013), 197–203, 10.1016/j.molcata.2013.05.004.
Rani, M., Shanker, U., Sun-light driven rapid photocatalytic degradation of methylene blue by poly(methyl methacrylate)/metal oxide nanocomposites. Colloids Surfaces A Physicochem. Eng. Asp. 559 (2018), 136–147, 10.1016/j.colsurfa.2018.09.040.
Raizada, P., Singh, P., Kumar, A., Sharma, G., Pare, B., Jonnalagadda, S.B., Thakur, P., Solar photocatalytic activity of nano-ZnO supported on activatedcarbon or brick grain particles: Role of adsorption in dye degradation. Appl. Catal. A Gen. 486 (2014), 159–169, 10.1016/j.apcata.2014.08.043.
Wang, J., Xie, Y., Zhang, Z., Li, J., Chen, X., Zhang, L., Xu, R., Zhang, X., Photocatalytic degradation of organic dyes with Er3+: YAlO3/ZnO composite under solar light. Sol. Energy Mater. Sol. Cells. 93 (2009), 355–361, 10.1016/j.solmat.2008.11.017.
Štrbac, D., Štrbac, G., Aggelopoulos, C.A., Dimitropoulos, M., Novaković, M., Ivetić, T., Yannopoulos, S.N., Photocatalytic degradation of Naproxen and methylene blue: Comparison between ZnO, TiO 2 and their mixture. Process Saf. Environ. Prot. 113 (2018), 174–183, 10.1016/j.psep.2017.10.007.
Moradi, S., Aberoomand-azar, P., Raeis-farshid, S., Abedini-Khorrami, S., Givianrad, M.H., The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite. J. Saudi Chem. Soc. 20 (2016), 373–378.
Prasannalakshmi, P., Shanmugam, N., Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Mater. Sci. Semicond. Process. 61 (2017), 114–124, 10.1016/j.mssp.2017.01.008.
Firdaus, C.M., Shah Rizam, M.S.B., Rusop, M., Rahmatul Hidayah, S., Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique. Procedia Eng. 41 (2012), 1367–1373, 10.1016/j.proeng.2012.07.323.
Delsouz Khaki, M.R., Shafeeyan, M.S., Raman, A.A.A., Daud, W.M.A.W., Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq. 258, 2018, 354–365, 10.1016/j.molliq.2017.11.030.