[en] Continuation of experience-dependent neural activity during offline sleep and wakefulness episodes is a critical component of memory consolidation. Using functional magnetic resonance imaging (fMRI), offline consolidation effects have been evidenced probing behavioural and neurophysiological changes during memory retrieval, i.e., in the context of task practice. Resting state fMRI (rsfMRI) further allows investigating the offline evolution of recently learned information without the confounds of online task-related effects. We used rsfMRI to investigate sleep-related changes in seed-based resting functional connectivity (FC) and amplitude of low frequency fluctuations (ALFF) after spatial navigation learning and relearning. On Day 1, offline resting state activity was measured immediately before and after topographical learning in a virtual town. On Day 4, it was measured again before and after relearning in an extended version of the town. Navigation-related activity was also recorded during target retrieval, i.e., online. Participants spent the first post-training night under regular sleep (RS) or sleep deprivation (SD) conditions. Results evidence FC and ALFF changes in task-related neural networks, indicating the continuation of navigation-related activity in the resting state. Although post-training sleep did not modulate behavioural performance, connectivity analyses evidenced increased FC after post-training SD between navigation-related brain structures during relearning in the extended environment. These results suggest that memory traces were less efficiently consolidated after post-learning SD, eventually resulting in the use of compensatory brain resources to link previously stored spatial elements with the newly presented information.
Disciplines :
Neurosciences & behavior
Author, co-author :
Deantoni, Michele ; Université de Liège - ULiège > GIGA ; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN-Centre for Research in Cognition and Neurosciences and UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium
Villemonteix, Thomas; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN-Centre for Research in Cognition and Neurosciences and UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium ; Psychopathology and Neuropsychology Lab, Paris 8 University, Rue de la Liberté 2, 93,526 Saint-Denis, France
Balteau, Evelyne ; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Schmidt, Christina ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie
Peigneux, Philippe ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalidation cognitive ; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN-Centre for Research in Cognition and Neurosciences and UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium
Language :
English
Title :
Post-Training Sleep Modulates Topographical Relearning-Dependent Resting State Activity.
F.R.S.-FNRS - Fonds de la Recherche Scientifique EOS - The Excellence Of Science Program
Funding text :
Funding: This research was funded by the Fonds de la Recherche Scientifique Médicale (FRSM grant #7020836, Brussels, Belgium) and the Excellence of Science (EOS) FNRS-FWO (MEMODYN grant #30446199). At the time of the study, TV was funded by an Université Libre de Bruxelles (ULB) Individual Fellowship. MD is supported by FRIA (Fonds pour la Recherche dans l’Industrie et l’Agriculture) Fellowship. CS is FNRS Research Associate. The APC was funded by EOS MEMODYN grant #30446199.This research was funded by the Fonds de la Recherche Scientifique M?dicale (FRSM grant #7020836, Brussels, Belgium) and the Excellence of Science (EOS) FNRS-FWO (MEMODYN grant #30446199). At the time of the study, TV was funded by an Universit? Libre de Bruxelles (ULB) Individual Fellowship. MD is supported by FRIA (Fonds pour la Recherche dans l?Industrie et l?Agriculture) Fellowship. CS is FNRS Research Associate. The APC was funded by EOS MEMODYN grant #30446199.
Burgess, N.; Maguire, E.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625. [CrossRef]
Boccia, M.; Nemmi, F.; Guariglia, C. Neuropsychology of environmental navigation in humans: Review and meta-analysis of FMRI studies in healthy participants. Neuropsychol. Rev. 2014, 24, 236–251. [CrossRef]
Epstein, R.A.; Patai, E.Z.; Julian, J.B.; Spiers, H.J. The cognitive map in humans: Spatial navigation and beyond. Nat. Neurosci. 2017, 20, 1504–1513. [CrossRef] [PubMed]
Voss, P.; Fortin, M.; Corbo, V.; Pruessner, J.C.; Lepore, F. Assessment of the caudate nucleus and its relation to route learning in both congenital and late blind individuals. BMC Neurosci. 2013, 14, 113. [CrossRef]
Hartley, T.; Maguire, E.; Spiers, H.J.; Burgess, N. The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron 2003, 37, 877–888. [CrossRef]
Jacobson, T.K.; Gruenbaum, B.F.; Markus, E.J. Extensive training and hippocampus or striatum lesions: Effect on place and response strategies. Physiol. Behav. 2012, 105, 645–652. [CrossRef]
Packard, M.G.; Knowlton, B.J. Learning and memory functions of the Basal Ganglia. Annu. Rev. Neurosci. 2002, 25, 563–593. [CrossRef] [PubMed]
Moser, M.B.; Rowland, D.C.; Moser, E.I. Place cells, grid cells, and memory. Cold Spring Harb. Perspect. Biol. 2015, 7, a021808. [CrossRef]
Wilson, M.A.; Mcnaughton, B.L. Reactivation of hippocampal ensemble memories during sleep. Science 1994, 265, 676–679. [CrossRef]
Nadasdy, Z.; Hirase, H.; Czurko, A.; Csicsvari, J.; Buzsaki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 1999, 19, 9497–9507. [CrossRef]
Grosmark, A.D.; Mizuseki, K.; Pastalkova, E.; Diba, K.; Buzsaki, G. REM sleep reorganizes hippocampal excitability. Neuron 2012, 75, 1001–1007. [CrossRef]
Montgomery, S.; Sirota, A.; Buzsaki, G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J. Neurosci. 2008, 28, 6731–6741. [CrossRef]
Maquet, P.; Laureys, S.; Peigneux, P.; Fuchs, S.; Petiau, C.; Phillips, C.; Aerts, J.; Del Fiore, G.; Degueldre, C.; Meulemans, T.; et al. Experience-dependent changes in cerebral activation during human REM sleep. Nat. Neurosci. 2000, 3, 831–836. [CrossRef]
Peigneux, P.; Laureys, S.; Fuchs, S.; Destrebecqz, A.; Collette, F.; Delbeuck, X.; Phillips, C.; Aerts, J.; Del Fiore, G.; Degueldre, C.; et al. Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage 2003, 20, 125–134. [CrossRef]
Huber, R.; Ghilardi, M.F.; Massimini, M.; Tononi, G. Local sleep and learning. Nature 2004, 430, 78–81. [CrossRef]
Rauchs, G.; Orban, P.; Schmidt, C.; Albouy, G.; Balteau, E.; Degueldre, C.; Schnackers, C.; Sterpenich, V.; Tinguely, G.; Luxen, A.; et al. Sleep modulates the neural substrates of both spatial and contextual memory consolidation. PLoS ONE 2008, 3, e2949. [CrossRef]
Urbain, C.; De Tiege, X.; Op De Beeck, M.; Bourguignon, M.; Wens, V.; Verheulpen, D.; Van Bogaert, P.; Peigneux, P. Sleep in children triggers rapid reorganization of memory-related brain processes. Neuroimage 2016, 134, 213–222. [CrossRef] [PubMed]
Maquet, P.; Peigneux, P.; Laureys, S.; Boly, M.; Dang-Vu, T.; Desseilles, M.; Cleeremans, A. Memory processing during human sleep as assessed by functional neuroimaging. Rev. Neurol. 2003, 159, S27–S29.
Fischer, S.; Nitschke, M.F.; Melchert, U.H.; Erdmann, C.; Born, J. Motor Memory Consolidation in Sleep Shapes More Effective Neuronal Representations. J. Neurosci. 2005, 25, 11248–11255. [CrossRef]
Debas, K.; Carrier, J.; Barakat, M.; Marrelec, G.; Bellec, P.; Abdallah, H.T.; Karni, A.; Ungerleider, L.G.; Benali, H.; Doyon, J. Off-line consolidation of motor sequence learning results in greater integration within a cortico-striatal functional network. Neuroimage 2014, 99, 50–58. [CrossRef]
Urbain, C.; Galer, S.; Van Bogaert, P.; Peigneux, P. Pathophysiology of sleep-dependent memory consolidation processes in children. Int. J. Psychophysiol. 2013, 89, 273–283. [CrossRef]
Peigneux, P.; Orban, P.; Balteau, E.; Degueldre, C.; Luxen, A.; Laureys, S.; Maquet, P. Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biol. 2006, 4, e100. [CrossRef]
Woolley, D.G.; Mantini, D.; Coxon, J.P.; D’Hooge, R.; Swinnen, S.P.; Wenderoth, N. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate. Hum. Brain Mapp. 2015, 36, 1265–1277. [CrossRef]
Keller, T.A.; Just, M.A. Structural and functional neuroplasticity in human learning of spatial routes. Neuroimage 2015, 125, 256–266. [CrossRef]
Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [CrossRef]
Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [CrossRef]
Horne, J.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [PubMed]
Ellis, B.W.; Johns, M.W.; Lancaster, R.; Raptopoulos, P.; Angelopoulos, N.; Priest, R.G. The St. Mary’s Hospital sleep questionnaire: A study of reliability. Sleep 1981, 4, 93–97. [CrossRef] [PubMed]
Rauchs, G.; Orban, P.; Balteau, E.; Schmidt, C.; Degueldre, C.; Luxen, A.; Maquet, P.; Peigneux, P. Partially segregated neural networks for spatial and contextual memory in virtual navigation. Hippocampus 2007, 18, 503–518. [CrossRef] [PubMed]
Hutton, C.; Bork, A.; Josephs, O.; Deichmann, R.; Ashburner, J.; Turner, R. Image distortion correction in fMRI: A quantitative evaluation. Neuroimage 2002, 16, 217–240. [CrossRef] [PubMed]
Friston, K.J.; Stephan, K.E.; Lund, T.E.; Morcom, A.; Kiebel, S. Mixed-effects and fMRI studies. Neuroimage 2005, 24, 244–252. [CrossRef]
Brown, T.I.; Whiteman, A.S.; Aselcioglu, I.; Stern, C.E. Structural differences in hippocampal and prefrontal gray matter volume support flexible context-dependent navigation ability. J. Neurosci. 2014, 34, 2314–2320. [CrossRef]
Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [CrossRef] [PubMed]
Chao-Gan, Y.; Yu-Feng, Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front. Syst. Neurosci. 2010, 4, 13. [CrossRef] [PubMed]
Robin, J.; Hirshhorn, M.; Rosenbaum, R.S.; Winocur, G.; Moscovitch, M.; Grady, C.L. Functional connectivity of hippocampal and prefrontal networks during episodic and spatial memory based on real-world environments. Hippocampus 2015, 25, 81–93. [CrossRef] [PubMed]
Reagh, Z.M.; Yassa, M.A. Repetition strengthens target recognition but impairs similar lure discrimination: Evidence for trace competition. Learn. Mem. 2014, 21, 342–346. [CrossRef]
Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [CrossRef]
Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007, 37, 90–101. [CrossRef]
Deliens, G.; Peigneux, P. One night of sleep is insufficient to achieve sleep-to-forget emotional decontextualisation processes. Cogn. Emot. 2014, 28, 698–706. [CrossRef]
Takashima, A.; Petersson, K.M.; Rutters, F.; Tendolkar, I.; Jensen, O.; Zwarts, M.J.; McNaughton, B.L.; Fernandez, G. Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proc. Natl. Acad. Sci. USA 2006, 103, 756–761. [CrossRef]
Haier, R.J.; Karama, S.; Leyba, L.; Jung, R.E. MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Res. Notes 2009, 2, 174. [CrossRef]
Rajah, M.N.; Languay, R.; Grady, C.L. Age-related changes in right middle frontal gyrus volume correlate with altered episodic retrieval activity. J. Neurosci. 2011, 31, 17941–17954. [CrossRef]
Guterstam, A.; Bjornsdotter, M.; Gentile, G.; Ehrsson, H.H. Posterior cingulate cortex integrates the senses of self-location and body ownership. Curr. Biol. 2015, 25, 1416–1425. [CrossRef]
Nau, M.; Navarro Schroder, T.; Bellmund, J.L.S.; Doeller, C.F. Hexadirectional coding of visual space in human entorhinal cortex. Nat. Neurosci. 2018, 21, 188–190. [CrossRef]
Ohnishi, T.; Matsuda, H.; Hirakata, M.; Ugawa, Y. Navigation ability dependent neural activation in the human brain: An fMRI study. Neurosci. Res. 2006, 55, 361–369. [CrossRef] [PubMed]
Wong, C.W.; Olafsson, V.; Plank, M.; Snider, J.; Halgren, E.; Poizner, H.; Liu, T.T. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment. PLoS ONE 2014, 9, e109622. [CrossRef]
Boccia, M.; Sulpizio, V.; Nemmi, F.; Guariglia, C.; Galati, G. Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: Evidence from resting-state functional connectivity. Brain Struct. Funct. 2017, 222, 1945–1957. [CrossRef]
Hirshhorn, M.; Grady, C.; Rosenbaum, R.; Winocur, G.; Moscovitch, M. The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: A longitudinal fMRI study. Hippocampus 2012, 22, 842–852. [CrossRef]
Long, X.; Zhang, S.J. A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Res. 2021. [CrossRef] [PubMed]
Nguyen, H.M.; Matsumoto, J.; Tran, A.H.; Ono, T.; Nishijo, H. sLORETA current source density analysis of evoked potentials for spatial updating in a virtual navigation task. Front. Behav. Neurosci. 2014, 8, 66. [CrossRef] [PubMed]
Nelson, A.J.; Powell, A.L.; Holmes, J.D.; Vann, S.D.; Aggleton, J.P. What does spatial alternation tell us about retrosplenial cortex function? Front. Behav. Neurosci. 2015, 9, 126. [CrossRef]
Powell, A.L.; Nelson, A.J.D.; Hindley, E.; Davies, M.; Aggleton, J.P.; Vann, S.D. The rat retrosplenial cortex as a link for frontal functions: A lesion analysis. Behav. Brain Res. 2017, 335, 88–102. [CrossRef] [PubMed]
Fryer, S.L.; Roach, B.J.; Ford, J.M.; Turner, J.A.; van Erp, T.G.; Voyvodic, J.; Preda, A.; Belger, A.; Bustillo, J.; O’Leary, D.; et al. Relating Intrinsic Low-Frequency BOLD Cortical Oscillations to Cognition in Schizophrenia. Neuropsychopharmacology 2015, 40, 2705–2714. [CrossRef] [PubMed]
Ren, W.; Li, R.; Zheng, Z.; Li, J. Neural Correlates of Associative Memory in the Elderly: A Resting-State Functional MRI Study. Biomed. Res. Int. 2015, 2015, 129180. [CrossRef]
Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 2006, 129, 564–583. [CrossRef]
Epstein, R.; Kanwisher, N. A cortical representation of the local visual environment. Nature 1998, 392, 598–601. [CrossRef]
Hagewoud, R.; Whitcomb, S.; Heeringa, A.; Havekes, R.; Koolhaas, J.; Meerlo, P. A time for learning and a time for sleep: The effect of sleep deprivation on contextual fear conditioning at different times of the day. Sleep 2010, 33, 1315–1322. [CrossRef] [PubMed]