Article (Scientific journals)
A note on the influence of pairwise misclassification in two-way tables
Magis, David; Gérard, Paul
2006In Journal of Statistical Computation and Simulation, 76, p. 875-887
Peer Reviewed verified by ORBi
 

Files


Full Text
Journal of Statistical Computation and Simulation 76 (2006), 875--887.pdf
Publisher postprint (345.08 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
log-linear model; independence; misclassification
Abstract :
[en] The influence of subject misclassification on log-linear analysis of two-way contingency tables is investigated. We define pairwise misclassification and focus on both deviance and Pearson statistics as goodness-of-fit criteria for testing independence between the variables. Attention is paid to the extremal values of the test statistics that can be reached on the basis of the data set. We derive theoretical properties and use them to detect potentially troubling cells in a simple computing routine. Examples illustrate our purpose.
Disciplines :
Mathematics
Author, co-author :
Magis, David ;  Université de Liège - ULiège > Département de mathématique > Statistique mathématique
Gérard, Paul ;  Université de Liège - ULiège > Département de mathématique > Statistique mathématique
Language :
English
Title :
A note on the influence of pairwise misclassification in two-way tables
Alternative titles :
[fr] Une note sur l'influence des erreurs de classification par paires dans les tables de contingence à double entrée
Publication date :
2006
Journal title :
Journal of Statistical Computation and Simulation
ISSN :
0094-9655
eISSN :
1563-5163
Publisher :
Taylor & Francis Ltd, Abingdon, United Kingdom
Volume :
76
Pages :
875-887
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 05 May 2010

Statistics


Number of views
61 (4 by ULiège)
Number of downloads
2 (0 by ULiège)

OpenCitations
 
1
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi