Biomass; Chalcone; Dimethylmalonate; Ionic liquids; Michael reaction; Microwaves; Catalysis; Physical and Theoretical Chemistry
Abstract :
[en] We developed a synthesis of chiral ionic liquids from proline and one of its derivatives. Nine chiral ionic liquids were synthesized with yields from 78% to 95%. These synthesized ionic liquids played two roles in Michael reactions, as solvents, and as basic catalysts, where the ionic phase could also be reused at least five times without loss of activity. The yields up to 99% were improved by increasing the amount of dimethylmalonate from 1.2 equivalents to 3 or 4 equivalents. Furthermore, the reaction time could be reduced from 24 h to 45 min through microwaves activation.
Disciplines :
Chemistry
Author, co-author :
Bacha, Katia ; Université de Liège - ULiège > TERRA Research Centre ; Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
Aguibi, Kawther; Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
Mbakidi, Jean-Pierre; Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
Bouquillon, Sandrine; Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
Language :
English
Title :
Beneficial contribution of biosourced ionic liquids and microwaves in the Michael reaction
Funding: This research was funded by Région Champagne Ardenne Excellence Framework [Amisolver program]. The APC was funded by the ICMR.This research was funded by R?gion Champagne Ardenne Excellence Framework [Amisolver program]. The APC was funded by the ICMR. This work was supported by the Amisolver program (Excellence Framework). We are grateful to the Public Authorities of Champagne-Ardenne and FEDER for material funds and post-doctoral fellowships to J.-P.M and to S. Hayouni and M. Mention for preliminary studies.
Prat, D.; Hayler, J.; Wells, A. A survey of solvent selection guides. Green Chem. 2014, 16, 4546–4551. [CrossRef]
Welton, T. Solvents and sustainable chemistry. Proc. Math. Phys. Eng. Sci. 2015, 471, 20150502. [CrossRef] [PubMed]
Li, C.-J.; Chan, T.-K. Organic Reactions in Aqueous Media; Wiley: New York, NY, USA, 1997.
Lindström, U.M. (Ed.) Organic Reactions in Water: Principles, Strategies and Applications; Blackwell: Oxford, UK, 2007.
Li, C.-J. (Ed.) Handbook of Green Chemistry, Green Solvents, Vol. 5, Reactions in Water; Wiley-VCH: Weinheim, Germany, 2010.
Akiya, N.; Savage, P.E. Roles of water for chemical reactions in high-temperature water. Chem. Rev. 2002, 102, 2725–2750. [CrossRef]
Simon, M.-O.; Lee, C.-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev. 2002, 41, 1415–1427. [CrossRef] [PubMed]
Hailes, H.C. Reaction solvent selection: The potential of water as a solvent for organic transformations. Org. Process Res. Dev. 2007, 11, 114–120. [CrossRef]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev. 2007, 107, 2563–2591. [CrossRef]
Hyatt, J.A. Liquid and supercritical carbon dioxide as organic solvents. J. Org. Chem. 1984, 49, 5097–5101. [CrossRef]
Jessop, P.G.; Leitner, W. (Eds.) Chemical Synthesis Using Supercritical Fluids; Wiley: New York, NY, USA, 1999.
Leitner, W.; Jessop, P.G. (Eds.) Handbook of Green Chemistry, Green Solvents, Vol. 4, Supercritical Solvents; Wiley-VCH: Weinheim, Germany, 2010.
Beckman, E.J. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluids 2004, 28, 121–191. [CrossRef]
Rayner, C.M. The potential of carbon dioxide in synthetic organic chemistry. Org. Process Res. Dev. 2007, 11, 121–132. [CrossRef]
Wasserscheid, P.; Welton, T. (Eds.) Ionic Liquids in Synthesis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008.
Wasserscheid, P.; Stark, A. (Eds.) Handbook of Green Chemistry, Green Solvents, Vol. 6, Ionic Liquids; Wiley-VCH: Weinheim, Germany, 2010.
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [CrossRef]
Parvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev. 2007, 107, 2615–2665. [CrossRef] [PubMed]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [CrossRef] [PubMed]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A 2010, 373, 1–56. [CrossRef]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 2011, 111, 3508–3576. [CrossRef]
Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—A review. Fluid Phase Equilib. 2004, 219, 93–98. [CrossRef]
Coleman, D.; Gathergood, N. Biodegradation studies of ionic liquids. Chem. Soc. Rev. 2010, 39, 600–637. [CrossRef]
Available online: https://tel.archives-ouvertes.fr/tel-01683248 (accessed on 3 January 2018).
Verwey, E.J.W.; Overbeek, J.T.G. Theory of the Stability of Lyophobic Colloids. J. Phys. Chem. 1947, 51, 631–636. [CrossRef] 26. Handy, S.T. Greener Solvents: Room Temperature Ionic Liquids from Biorenewable Sources. Chem. Eur. J. 2003, 9, 2938–2944. [CrossRef]
Lafuente, L.; Diaz, G.; Bravo, R.; Ponzinibbio, A. Efficient and Selective N-, S-and O-Acetylation in TEAA Ionic Liquid as Green Solvent. Applications in Synthetic Carbohydrate Chemistry. Lett. Org. Chem. 2016, 13, 195–200. [CrossRef]
Hajipour, A.R.; Rafiee, F. Recent Progress in Ionic Liquids and their Applications in Organic Synthesis. Org. Prep. Proced. Int. 2015, 47, 249–308. [CrossRef]
Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta 2008, 607, 126–135. [CrossRef]
Karimi, M.; Dadfarnia, S.; Mohammad Haji Shabani, A.; Tamaddon, F.; Azadi, D. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligand less extraction and preconcentration of lead and cadmium in edible oils. Talanta 2015, 144, 648–654. [CrossRef]
Makanyire, T.; Sanchez-Segado, S.; Jha, A. Separation and recovery of critical metal ions using ionic liquids. Adv. Manuf. 2016, 4, 33–46. [CrossRef]
Kuzmina, O.; Bordes, E.; Schmauck, J.; Hunt, P.A.; Hallett, J.P.; Welton, T. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf]. Phys. Chem. Chem. Phys. 2016, 18, 16161–16168. [CrossRef]
Hayouni, S.; Ferlin, N.; Bouquillon, S. Hydrogenation Catalysis in Biobased Ionic Liquids, “New Advances in Hydrogenation Processes—Fundamentals and Applications”; Ravanchi, M.T., Ed.; Intech Open Science: London, UK, 2017; p. 15. [CrossRef]
Ghavre, M.; Morrissey, S.; Gathergood, N. Hydrogenation in Ionic Liquids, “Ionic Liquids: Applications and Perspectives”; Kokorin, A., Ed.; Intech Open Science: London, UK, 2011; p. 15. [CrossRef]
Ferlin, N.; Courty, M.; Gatard, S.; Spulak, M.; Quilty, B.; Beadham, I.; Ghavre, M.; Haiß, A.; Kümmerer, K.; Gathergood, N.; et al. Biomass derived ionic liquids: Synthesis from natural organic acids, characterization, toxicity, biodegradation and use as solvents for catalytic hydrogenation processes. Tetrahedron 2013, 69, 6150–6161. [CrossRef]
Hayouni, S.; Robert, A.; Ferlin, N.; Amri, H.; Bouquillon, S. New biobased tetrabutylphosphonium ionic liquids: Synthesis, characterization and use as a solvent or co-solvent for mild and greener Pd-catalyzed hydrogenation processes. RSC Adv. 2016, 6, 113583–113595. [CrossRef]
Ferlin, N.; Courty, M.; Nguyen Van Nhien, A.; Gatard, S.; Pour, M.; Quilty, B.; Ghavre, M.; Haiß, A.; Kümmerer, K.; Gathergood, N.; et al. Tetrabutylammonium prolinate-based ionic liquids: A combined asymmetric catalysis, antimicrobial toxicity and biodegradation assessment. RSC Adv. 2013, 3, 26241–26251. [CrossRef]
Chiappe, C.; Cinzia, C.; Marra, A.; Mele, A. Synthesis and Applications of Ionic Liquids Derived from Natural Sugars. Top. Curr. Chem. 2010, 295, 177–195. [PubMed]
Handy, S.T.; Okello, M.; Dickenson, G. Solvents from Biorenewable Sources: Ionic Liquids Based on Fructose. Org. Lett. 2003, 5, 2513–2515. [CrossRef]
Hayouni, S.; Ferlin, N.; Bouquillon, S. High catalytic and recyclable systems for heck reactions in biosourced ionic liquids. Mol. Catal. 2017, 437, 121–129. [CrossRef]
Malkar, R.S.; Jadhav, A.L.; Yadav, G.D. Innovative catalysis in Michael addition reactions for C-X bond formation. Mol. Catal. 2020, 485, 110814. [CrossRef] 47. Elhaj, E.; Wang, H.; Gu, Y. Functionalized quaternary ammonium salt ionic liquids (FQAILs) as an economic and efficient catalyst for synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Mol. Catal. 2019, 468, 19–28. [CrossRef]
Dere, R.T.; Pal, R.R.; Patil, P.S.; Salunkhe, M.M. Influence of ionic liquids on the phase transfer-catalyzed enantioselective Michael reaction. Tetrahedron Lett. 2003, 44, 5351–5353. [CrossRef]
Ranu, B.C.; Banerjee, S. Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmIm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles. Org. Lett. 2005, 7, 3049–3052. [CrossRef] [PubMed]
Surya Prakash Rao, H.; Jothilingam, S. Solvent-free microwave-mediated Michael addition reactions. J. Chem. Sci. 2005, 117, 323–328.
Fukumoto, K.; Yoshizawa, M.; Ohno, H. Room Temperature Ionic Liquids from 20 Natural Amino Acids. J. Am. Chem. Soc. 2005, 127, 2398–2399. [CrossRef] [PubMed]
Villanueva, M.; Coronas, A.; García, J.; Salgado, J. Thermal Stability of Ionic Liquids for Their Application as New Absorbents. Ind. Eng. Chem. Res. 2013, 52, 15718–15727. [CrossRef]
Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 2001, 57, 9199–9223. [CrossRef]
Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
Tsogoeva, S.B. Recent Advances in Asymmetric Organocatalytic 1,4-Conjugate Additions. Eur. J. Org. Chem. 2007, 11, 1701–1716. [CrossRef]
Ceccarelli, R.; Insogna, S.; Bella, M. Organocatalytic regioselective Michael additions of cyclic enones via asymmetric phase transfer catalysis. Org. Biomol. Chem. 2006, 4, 4281–4284. [CrossRef]
Mahajan, D.P.; Godbole, H.M.; Singh, G.P.; Shenoy, G.G. Enantioselective Michael addition of malonic esters to benzalacetophenone by using chiral phase transfer catalysts derived from proline-mandelic acid/tartaric acid. J. Chem. Sci. 2019, 131, 1642–1645. [CrossRef]
Dongdong, C.; Guosheng, F.; Jiaxing, Z.; Hongyu, W.; Changwu, Z.; Gang, Z. Enantioselective Michael Addition of Malonates to Chalcone Derivatives Catalyzed by Dipeptide-derived Multifunctional Phosphonium Salts. J. Org. Chem. 2016, 81, 9973–9982.