[en] Emission of volatile organic compounds (VOCs) in the atmosphere is a major health concern for the World Health Organization (WHO). For instance, more than 4 million premature deaths are attributed yearly to outdoor air pollution, thus calling for advanced remediation techniques. Absorption systems using solvents are commonly used to remove air pollutants, yet efficiency is limited by a solvent property, which is either hydrophilic or hydrophobic. As a consequence, classical solvents are not able to capture both hydrophilic and hydrophobic contaminants. Therefore, we synthesized the following ionic liquids from choline chloride and fatty acids: hexylcholinium levulinate, octylcholinium levulinate, hexylcholinium lactate and octylcholinium lactate. Ionic liquids were then tested for absorption of toluene, dichloromethane (CH2Cl2) and methyl ethyl ketone. Ionic liquids were characterized by 1H and 13C NMR, infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis, density, viscosity and polarity. Vapor–liquid partition coefficients of VOC were determined for ionic liquids. We found that solvents were able to solubilize both hydrophobic and hydrophilic VOC. Moreover, no saturation was detected up to an initial VOC concentration of 3000 g/m3, whereas classical absorption processes usually involve gas streams containing VOC concentrations up to 1000 g/m3. Moreover, the solvent can be successfully recycled with unchanged capacity during five absorption–desorption cycles. Overall, our solvents appear promising for the treatment of industrial gaseous effluents.
Disciplines :
Chemistry
Author, co-author :
Fahri, Fatima; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, ULCO, Dunkirk, France
Bacha, Katia ; Université de Liège - ULiège > TERRA Research Centre ; Institut de Chimie Moléculaire (ICMR), UMR CNRS 7312, SFR Condorcet FR CNRS 3417, URCA, Reims, France
Chiki, Fadwa Fatima; Institut de Chimie Moléculaire (ICMR), UMR CNRS 7312, SFR Condorcet FR CNRS 3417, URCA, Reims, France
Mbakidi, Jean-Pierre; Institut de Chimie Moléculaire (ICMR), UMR CNRS 7312, SFR Condorcet FR CNRS 3417, URCA, Reims, France
Panda, Somenath; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, ULCO, Dunkirk, France
Bouquillon, Sandrine; Institut de Chimie Moléculaire (ICMR), UMR CNRS 7312, SFR Condorcet FR CNRS 3417, URCA, Reims, France
Fourmentin, Sophie; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, ULCO, Dunkirk, France
Language :
English
Title :
Air pollution: new bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency
This work was supported by the SFR Condorcet and the SATT Nord. We are grateful to the SFR Condorcet for material funds, Fatima Fahri and Katia Bacha internship funding, to the SATT Nord for an engineer position to Jean-Pierre Mbakidi and to ULCO for the funding of a postdoctoral position for Somenath Panda. Tarek Moufawad is greatly acknowledged for his help for polarity experiments and density and viscosity measurements.This work was supported by the SFR Condorcet and the SATT Nord. We are grateful to the SFR Condorcet for material funds, Fatima Fahri and Katia Bacha internship funding, to the SATT Nord for an engineer position to Jean-Pierre Mbakidi and to ULCO for the funding of a postdoctoral position for Somenath Panda. Tarek Moufawad is greatly acknowledged for his help for polarity experiments and density and viscosity measurements.
Anthony JL, Brennecke JF, Holbrey JD et al (2002) Physicochemical properties of ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 41–126 DOI: 10.1002/3527600701.ch3
Blach P, Fourmentin S, Landy D et al (2008) Cyclodextrins: a new efficient absorbent to treat waste gas streams. Chemosphere 70:374–380. 10.1016/j.chemosphere.2007.07.018 DOI: 10.1016/j.chemosphere.2007.07.018
Bouquillon S, Mbakidi J-P (2019) Composés de type liquide ionique, leurs procédés de préparation et leurs utilisations. EP19305944
Chiappe C, Marra A, Mele A (2010) Synthesis and applications of ionic liquids derived from natural sugars. In: Rauter A, Vogel P, Queneau Y (eds) Carbohydrates in sustainable development II. Topics in current chemistry, vol 295. Springer, Berlin, Heidelberg, pp 177–195
Cichowska-Kopczyńska I, Aranowski R (2020) Use of pyridinium and pyrrolidinium ionic liquids for removal of toluene from gas streams. J Mol Liq 298:1–9. 10.1016/j.molliq.2019.112091 DOI: 10.1016/j.molliq.2019.112091
De Gaetano Y, Mohamadou A, Boudesocque S et al (2015) Ionic liquids derived from esters of glycine betaine: synthesis and characterization. J Mol Liq 207:60–66. 10.1016/j.molliq.2015.03.016 DOI: 10.1016/j.molliq.2015.03.016
Diallo AO, Len C, Morgan AB, Marlair G (2012) Revisiting physico-chemical hazards of ionic liquids. Sep Purif Technol 97:228–234. 10.1016/j.seppur.2012.02.016 DOI: 10.1016/j.seppur.2012.02.016
Feng R, Wang Q, Huang CC et al (2019) Ethylene, xylene, toluene and hexane are major contributors of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian Games. Environ Chem Lett 17:1151–1160. 10.1007/s10311-018-00846-w DOI: 10.1007/s10311-018-00846-w
Fourmentin S, Landy D, Moura L et al (2016) Procédé d’épuration d’un effluent gazeux. FR3058905A1
Francisco M, van den Bruinhorst A, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085. 10.1002/anie.201207548 DOI: 10.1002/anie.201207548
Gabriele F, Chiarini M, Germani R et al (2019) Effect of water addition on choline chloride/glycol deep eutectic solvents: characterization of their structural and physicochemical properties. J Mol Liq 291:111301. 10.1016/j.molliq.2019.111301 DOI: 10.1016/j.molliq.2019.111301
Guillerm M, Couvert A, Amrane A et al (2016) Absorption of toluene in silicone oil: effect of the solvent viscosity on hydrodynamics and mass transfer. Chem Eng Res Des 109:32–40. 10.1016/j.cherd.2015.12.028 DOI: 10.1016/j.cherd.2015.12.028
Guillerm M, Couvert A, Amrane A et al (2017) Toluene degradation by a water/silicone oil mixture for the design of two phase partitioning bioreactors. Chin J Chem Eng 25:1512–1518. 10.1016/j.cjche.2017.01.010 DOI: 10.1016/j.cjche.2017.01.010
Hayouni S, Robert A, Ferlin N et al (2016) New biobased tetrabutylphosphonium ionic liquids: synthesis, characterization and use as a solvent or co-solvent for mild and greener Pd-catalyzed hydrogenation processes. RSC Adv 6:113583–113595. 10.1039/c6ra23056c DOI: 10.1039/c6ra23056c
Hayouni S, Ferlin N, Bouquillon S (2017) High catalytic and recyclable systems for heck reactions in biosourced ionic liquids. Mol Catal 437:121–129. 10.1016/j.mcat.2017.05.007 DOI: 10.1016/j.mcat.2017.05.007
Heymes F, Manno-demoustier P, Fanlo JL, Moulin P (2006) A new efficient absorption liquid to treat exhaust air loaded with toluene. Chem Eng J 115:225–231. 10.1016/j.cej.2005.10.011 DOI: 10.1016/j.cej.2005.10.011
Hu YL, Zhang RL, Fang D (2019) Quaternary phosphonium cationic ionic liquid/porous metal–organic framework as an efficient catalytic system for cycloaddition of carbon dioxide into cyclic carbonates. Environ Chem Lett 17:501–508. 10.1007/s10311-018-0793-9 DOI: 10.1007/s10311-018-0793-9
Karimi B, Meyer C, Gilbert D, Bernard N (2016) Air pollution below WHO levels decreases by 40% the links of terrestrial microbial networks. Environ Chem Lett 14:467–475. 10.1007/s10311-016-0589-8 DOI: 10.1007/s10311-016-0589-8
Kolb B, Ettre LS (2006) Static headspace-gas chromatography: theory and practice. Wiley, Hoboken DOI: 10.1002/0471914584
Kostić MD, Divac VM (2019) Green solvents in organoselenium chemistry. Environ Chem Lett 17:897–915. 10.1007/s10311-018-00848-8 DOI: 10.1007/s10311-018-00848-8
Landy D, Mallard I, Ponchel A et al (2012) Remediation technologies using cyclodextrins: an overview. Environ Chem Lett 10:225–237. 10.1007/s10311-011-0351-1 DOI: 10.1007/s10311-011-0351-1
Le Cloirec P (1998) Les composés organiques volatils (COV) dans l’environnement. Lavoisier, Paris
Lhuissier M, Couvert A, Amrane A et al (2018) Characterization and selection of waste oils for the absorption and biodegradation of VOC of different hydrophobicities. Chem Eng Res Des 138:482–489. 10.1016/j.cherd.2018.08.028 DOI: 10.1016/j.cherd.2018.08.028
Lu JG, Li X, Zhao YX et al (2019) CO2 capture by ionic liquid membrane absorption for reduction of emissions of greenhouse gas. Environ Chem Lett 17:1031–1038. 10.1007/s10311-018-00822-4 DOI: 10.1007/s10311-018-00822-4
Mannu A, Ferro M, Di Pietro ME, Mele A (2019) Innovative applications of waste cooking oil as raw material. Sci Prog 102:153–160. 10.1177/0036850419854252 DOI: 10.1177/0036850419854252
McDonald JL, Sykora RE, Hixon P et al (2014) Impact of water on CO2 capture by amino acid ionic liquids. Environ Chem Lett 12:201–208. 10.1007/s10311-013-0435-1 DOI: 10.1007/s10311-013-0435-1
Moura L, Moufawad T, Ferreira M et al (2017) Deep eutectic solvents as green absorbents of volatile organic pollutants. Environ Chem Lett. 10.1007/s10311-017-0654-y DOI: 10.1007/s10311-017-0654-y
Parmar GR, Rao NN (2009) Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol 39:41–78. 10.1080/10643380701413658 DOI: 10.1080/10643380701413658
Poddar TK, Sirkar KK (1996) Henry’s law constant for selected volatile organic compounds in high-boiling oils. J Chem Eng Data 41:1329–1332. 10.1021/je960064i DOI: 10.1021/je960064i
Quijano G, Couvert A, Amrane A et al (2011) Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci 66:2707–2712. 10.1016/j.ces.2011.01.047 DOI: 10.1016/j.ces.2011.01.047
Rodriguez Castillo AS, Guihéneuf S, Biard PF et al (2018) Physicochemical properties of some hydrophobic room-temperature ionic liquids applied to volatile organic compounds biodegradation processes. J Chem Technol Biotechnol 93:215–223. 10.1002/jctb.5343 DOI: 10.1002/jctb.5343
Rodriguez Castillo AS, Biard PF, Guihéneuf S et al (2019) Assessment of VOC absorption in hydrophobic ionic liquids: measurement of partition and diffusion coefficients and simulation of a packed column. Chem Eng J 360:1416–1426. 10.1016/j.cej.2018.10.146 DOI: 10.1016/j.cej.2018.10.146
Singh SK, Savoy AW (2020) Ionic liquids synthesis and applications: an overview. J Mol Liq 297:112038. 10.1016/j.molliq.2019.112038 DOI: 10.1016/j.molliq.2019.112038
Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 10.1039/b304400a DOI: 10.1039/b304400a
Vuong MD, Couvert A, Couriol C et al (2009) Determination of the Henry’s constant and the mass transfer rate of VOCs in solvents. Chem Eng J 150:426–430. 10.1016/j.cej.2009.01.027 DOI: 10.1016/j.cej.2009.01.027
WHO (2020) Ambient air pollution—a major threat to health and climate. http://www9.who.int/airpollution/ambient/en/. Accessed 07 Apr 2020
Yi YB, Lee JW, Chung CH (2015) Conversion of plant materials into hydroxymethylfurfural using ionic liquids. Environ Chem Lett 13:173–190. 10.1007/s10311-015-0503-9 DOI: 10.1007/s10311-015-0503-9
Yu G, Dai C, Gao H et al (2018) Capturing condensable gases with ionic liquids. Ind Eng Chem Res 57:12202–12214. 10.1021/acs.iecr.8b02420 DOI: 10.1021/acs.iecr.8b02420
Zhou Q, Lu X, Zhang S, Guo L (2014) Physicochemical properties of ionic liquids. In: Plechkova NV, Seddon KR (eds) Ionic liquids further UnCOILed: critical expert overviews. Wiley, Hoboken, pp 275–307 DOI: 10.1002/9781118839706.ch11