Abstract :
[en] Today, there exists a wide variety of algorithms dedicated to high-contrast imaging, especially for the detection and characterisation of exoplanet signals. These algorithms are tailored to address the very high contrast between the exoplanet signal(s), which can be more than two orders of magnitude fainter than the bright starlight residuals in coronagraphic images. The starlight residuals are inhomogeneously distributed and follow various timescales that depend on the observing conditions and on the target star brightness. Disentangling the exoplanet signals within the starlight residuals is therefore challenging, and new post-processing algorithms are striving to achieve more accurate astrophysical results. The Exoplanet Imaging Data Challenge is a community-wide effort to develop, compare and evaluate algorithms using a set of benchmark high-contrast imaging datasets. After a first phase ran in 2020 and focused on the detection capabilities of existing algorithms, the focus of this ongoing second phase is to compare the characterisation capabilities of state-of-the-art techniques. The characterisation of planetary companions is two-fold: the astrometry (estimated position with respect to the host star) and spectrophotometry (estimated contrast with respect to the host star, as a function of wavelength). The goal of this second phase is to offer a platform for the community to benchmark techniques in a fair, homogeneous and robust way, and to foster collaborations.
Scopus citations®
without self-citations
2