Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies.
[en] Nemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation.
Disciplines :
Neurology Pediatrics
Author, co-author :
Labasse, Clémence; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
Brochier, Guy; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
Taratuto, Ana-Lia; Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
Cadot, Bruno; Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
Rendu, John; Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France ; Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
Monges, Soledad; Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
Biancalana, Valérie; Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France ; Laboratoire de Diagnostic Génétique, Faculté de Médecine, CHRU, Strasbourg, France
Quijano-Roy, Susana; APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
Bui, Mai Thao; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
Chanut, Anaïs; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
Madelaine, Angéline; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
Lacène, Emmanuelle; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
Beuvin, Maud; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France ; Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
Amthor, Helge; APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
Servais, Laurent ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pédiatrie ; Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
de Feraudy, Yvan; Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France ; Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
Erro, Marcela; Gutierrez Pediatric Hospital, Buenos Aires, Argentina
Saccoliti, Maria; Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
Neto, Osorio Abath; Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
Fauré, Julien; Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France ; Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
Lannes, Béatrice; Department of Pathology, Strasbourg University Hospital, Strasbourg, France
Laugel, Vincent; Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
Coppens, Sandra; Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
Lubieniecki, Fabiana; Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
Bello, Ana Buj; Université Paris-Saclay, Integrare Research Unit UMR S951, Inserm, Evry, France ; Généthon, Université Evry, Evry, France
Laing, Nigel; Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Australia
Evangelista, Teresinha; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France ; Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
Laporte, Jocelyn; Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
Böhm, Johann; Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
Romero, Norma B ; Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France. nb.romero@institut-myologie.org ; Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France. nb.romero@institut-myologie.org
Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies.
AFM - Association Française contre les Myopathies Institute of Myology Fondation Maladies Rares France Génomique NHMRC - National Health and Medical Research Council INSERM - French Institute of Health and Medical Research AISB - Society for the Study of Artificial Intelligence and Simulation of Behaviour University of Strasbourg CNRS - Centre National de la Recherche Scientifique
Funding text :
We thank Anne Boland and Jean-François Deleuze for their technical support in exome sequencing, Nicolas Dondaine in MYOdiagHTS sequencing, and Favienne Levy-Borsato for retrieving clinical data from ancient records. This work was supported by the Association Institute of Myology (AIM), Inserm, CNRS, University of Strasbourg, Labex INRT (ANR-10-LABX-0030, ANR-10-IDEX-0002-02), Association Française contre les Myopathies (AFM-22734), France Génomique (ANR-10-INBS-09) and Fondation Maladies Rares within the frame of the “Myocapture” sequencing project, and AFM-16992 and CREGEMES for the MYOdiagHTS sequencing. NGL was supported by Australian National Health and Medical Research Council Fellowship APP1117510.
Baumann M, Steichen-Gersdorf E, Krabichler B, Petersen BS, Weber U, Schmidt WM et al (2017) Homozygous SYNE1 mutation causes congenital onset of muscular weakness with distal arthrogryposis: a genotype-phenotype correlation. Eur J Hum Genet 25:262–266. 10.1038/ejhg.2016.144 DOI: 10.1038/ejhg.2016.144
Bonne G, Quijano-Roy S (2013) Emery-Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. Handb Clin Neurol 113:1367–1376. 10.1016/B978-0-444-59565-2.00007-1 DOI: 10.1016/B978-0-444-59565-2.00007-1
Bouzid T, Kim E, Riehl BD, Esfahani AM, Rosenbohm J, Yang R et al (2019) The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J Biol Eng 13:68. 10.1186/s13036-019-0197-9 DOI: 10.1186/s13036-019-0197-9
Carmosino M, Torretta S, Procino G, Gerbino A, Forleo C, Favale S et al (2014) Role of nuclear Lamin A/C in cardiomyocyte functions. Biol Cell 106:346–358. 10.1111/boc.201400033 DOI: 10.1111/boc.201400033
Domazetovska A, Ilkovski B, Kumar V, Valova VA, Vandebrouck A, Hutchinson DO et al (2007) Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann Neurol 62:597–608. 10.1002/ana.21200 DOI: 10.1002/ana.21200
Donkervoort S, Chan SHS, Hayes LH, Bradley N, Nguyen D, Leach ME et al (2017) Cytoplasmic body pathology in severe ACTA1-related myopathy in the absence of typical nemaline rods. Neuromuscul Disord 27:531–536. 10.1016/j.nmd.2017.02.012 DOI: 10.1016/j.nmd.2017.02.012
Ebashi S (1974) Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system. Essays Biochem 10:1–36
Fukui Y (1978) Intranuclear actin bundles induced by dimethyl sulfoxide in interphase nucleus of Dictyostelium. J Cell Biol 76:146–157. 10.1083/jcb.76.1.146 DOI: 10.1083/jcb.76.1.146
Gibbs EM, Clarke NF, Rose K, Oates EC, Webster R, Feldman EL et al (2013) Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med (Berl) 91:727–737. 10.1007/s00109-013-0994-4 DOI: 10.1007/s00109-013-0994-4
Hetzer MW (2010) The nuclear envelope. Cold Spring Harb Perspect Biol 2:a000539. 10.1101/cshperspect.a000539 DOI: 10.1101/cshperspect.a000539
Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S, Davies KE et al (2004) Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet 13:1727–1743. 10.1093/hmg/ddh185 DOI: 10.1093/hmg/ddh185
Illingworth MA, Main M, Pitt M, Feng L, Sewry CA, Gunny R et al (2014) RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigimine. Neuromuscul Disord 24:707–712. 10.1016/j.nmd.2014.05.003 DOI: 10.1016/j.nmd.2014.05.003
Jungbluth H, Treves S, Zorzato F, Sarkozy A, Ochala J, Sewry C et al (2018) Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 14:151–167. 10.1038/nrneurol.2017.191 DOI: 10.1038/nrneurol.2017.191
Kaimaktchiev V, Goebel H, Laing N, Narus M, Weeks D, Nixon R (2006) Intranuclear nemaline rod myopathy. Muscle Nerve 34:369–372. 10.1002/mus.20521 DOI: 10.1002/mus.20521
Kelpsch DJ, Tootle TL (2018) Nuclear Actin: From Discovery to Function. Anat Rec (Hoboken) 301:1999–2013. 10.1002/ar.23959 DOI: 10.1002/ar.23959
Ladha S, Coons S, Johnsen S, Sambuughin N, Bien-Wilner R, Sivakumar K (2008) Histopathologic progression and a novel mutation in a child with nemaline myopathy. J Child Neurol 23:813–817. 10.1177/0883073808314363 DOI: 10.1177/0883073808314363
Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S et al (2009) Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat 30:1267–1277. 10.1002/humu.21059 DOI: 10.1002/humu.21059
Lornage X, Quijano-Roy S, Amthor H, Carlier RY, Monnier N, Deleuze JF et al (2020) Asymmetric muscle weakness due to ACTA1 mosaic mutations. Neurology 95:e3406–e3411. 10.1212/WNL.0000000000010947 DOI: 10.1212/WNL.0000000000010947
Malfatti E, Lehtokari VL, Bohm J, De Winter JM, Schaffer U, Estournet B et al (2014) Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype. Acta Neuropathol Commun 2:44. 10.1186/2051-5960-2-44 DOI: 10.1186/2051-5960-2-44
Malfatti E, Romero NB (2016) Nemaline myopathies: State of the art. Rev Neurol (Paris) 172:614–619. 10.1016/j.neurol.2016.08.004 DOI: 10.1016/j.neurol.2016.08.004
Moreno CAM, Abath Neto O, Donkervoort S, Hu Y, Reed UC, Oliveira ASB et al (2017) Clinical and Histologic Findings in ACTA1-Related Nemaline Myopathy: Case Series and Review of the Literature. Pediatr Neurol 75:11–16. 10.1016/j.pediatrneurol.2017.04.002 DOI: 10.1016/j.pediatrneurol.2017.04.002
Munot P, Lashley D, Jungbluth H, Feng L, Pitt M, Robb SA et al (2010) Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord 20:796–800. 10.1016/j.nmd.2010.07.274 DOI: 10.1016/j.nmd.2010.07.274
Nowak KJ, Sewry CA, Navarro C, Squier W, Reina C, Ricoy JR et al (2007) Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 61:175–184. 10.1002/ana.21035 DOI: 10.1002/ana.21035
Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K et al (1999) Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23:208–212. 10.1038/13837 DOI: 10.1038/13837
Pfisterer K, Jayo A, Parsons M (2017) Control of nuclear organization by F-actin binding proteins. Nucleus 8:126–133. 10.1080/19491034.2016.1267093 DOI: 10.1080/19491034.2016.1267093
Ravenscroft G, Laing NG, Bonnemann CG (2015) Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Brain 138:246–268. 10.1093/brain/awu368 DOI: 10.1093/brain/awu368
Robb SA, Sewry CA, Dowling JJ, Feng L, Cullup T, Lillis S et al (2011) Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscul Disord 21:379–386. 10.1016/j.nmd.2011.02.012 DOI: 10.1016/j.nmd.2011.02.012
Romero NB, Sandaradura SA, Clarke NF (2013) Recent advances in nemaline myopathy. Curr Opin Neurol 26:519–526. 10.1097/WCO.0b013e328364d681 DOI: 10.1097/WCO.0b013e328364d681
Ross JA, Levy Y, Ripolone M, Kolb JS, Turmaine M, Holt M et al (2019) Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy. Acta Neuropathol 138:477–495. 10.1007/s00401-019-02034-8 DOI: 10.1007/s00401-019-02034-8
Saito Y, Nishikawa A, Iida A, Mori-Yoshimura M, Oya Y, Ishiyama A et al (2020) ADSSL1 myopathy is the most common nemaline myopathy in Japan with variable clinical features. Neurology 95:e1500–e1511. 10.1212/WNL.0000000000010237 DOI: 10.1212/WNL.0000000000010237
Schessl J, Columbus A, Hu Y, Zou Y, Voit T, Goebel HH et al (2010) Familial reducing body myopathy with cytoplasmic bodies and rigid spine revisited: identification of a second LIM domain mutation in FHL1. Neuropediatrics 41:43–46. 10.1055/s-0030-1254101 DOI: 10.1055/s-0030-1254101
Sewry CA, Laitila JM, Wallgren-Pettersson C (2019) Nemaline myopathies: a current view. J Muscle Res Cell Motil 40:111–126. 10.1007/s10974-019-09519-9 DOI: 10.1007/s10974-019-09519-9
Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C, Romero N et al (2003) Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord 13:519–531. 10.1016/s0960-8966(03)00101-9 DOI: 10.1016/s0960-8966(03)00101-9
Suwa K, Mizuguchi M, Momoi MY, Nakamura M, Arima K, Komaki H et al (2002) Co-existence of nemaline and cytoplasmic bodies in muscle of an infant with nemaline myopathy. Neuropathology 22:294–298. 10.1046/j.1440-1789.2002.00461.x DOI: 10.1046/j.1440-1789.2002.00461.x
Udd B, Stenzel W, Oldfors A, Olive M, Romero N, Lammens M et al (2019) 1st ENMC European meeting: the EURO-NMD pathology working group Recommended Standards for Muscle Pathology Amsterdam, The Netherlands, 7 December 2018. Neuromuscul Disord 29:483–485. 10.1016/j.nmd.2019.03.002 DOI: 10.1016/j.nmd.2019.03.002
Wallefeld W, Krause S, Nowak KJ, Dye D, Horvath R, Molnar Z et al (2006) Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscul Disord 16:541–547. 10.1016/j.nmd.2006.07.018 DOI: 10.1016/j.nmd.2006.07.018
Weeks DA, Nixon RR, Kaimaktchiev V, Mierau GW (2003) Intranuclear rod myopathy, a rare and morphologically striking variant of nemaline rod myopathy. Ultrastruct Pathol 27:151–154. 10.1080/01913120309933 DOI: 10.1080/01913120309933
Welch WJ, Suhan JP (1985) Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol 101:1198–1211. 10.1083/jcb.101.4.1198 DOI: 10.1083/jcb.101.4.1198