endocrinology; genetics; neonatology; paediatrics; Pediatrics, Perinatology and Child Health
Abstract :
[en] OBJECTIVE: INGR1D (INvestigating Genetic Risk for type 1 Diabetes) was a type 1 diabetes (T1D) genetic screening study established to identify participants for a primary prevention trial (POInT, Primary Oral Insulin Trial).
METHODS: The majority of participants were recruited by research midwives in antenatal clinics from 18 weeks' gestation. Using the NHS Newborn Bloodspot Screening Programme (NBSP) infrastructure, participants enrolled in INGR1D had an extra sample taken from their day 5 bloodspot card sent for T1D genetic screening. Those at an increased risk of T1D were informed of the result, given education about T1D and the opportunity to take part in POInT.
RESULTS: Between April 2018 and November 2020, 66% of women approached about INGR1D chose to participate. 15 660 babies were enrolled into INGR1D and 14 731 blood samples were processed. Of the processed samples, 157 (1%) had confirmed positive results, indicating an increased risk of T1D, of whom a third (n=49) enrolled into POInT (20 families were unable to participate in POInT due to COVID-19 lockdown restrictions).
CONCLUSION: The use of prospective consent to perform personalised genetic testing on samples obtained through the routine NBSP represents a novel mechanism for clinical genetic research in the UK and provides a model for further population-based genetic studies in the newborn.
Disciplines :
Pediatrics Neurology Laboratory medicine & medical technology
Author, co-author :
Bendor-Samuel, Owen Martyn ; Oxford Vaccine Group, University of Oxford, Oxford, Oxfordshire, UK
Wishlade, Tabitha; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, Oxfordshire, UK
Willis, Louise; Oxford Vaccine Group, University of Oxford, Oxford, Oxfordshire, UK
Aley, Parvinder; Oxford Vaccine Group, University of Oxford, Oxford, Oxfordshire, UK
Choi, Edward; Oxford Vaccine Group, University of Oxford, Oxford, Oxfordshire, UK
Craik, Rachel; Oxford Vaccine Group, University of Oxford, Oxford, Oxfordshire, UK
Mujadidi, Yama; Oxford Vaccine Group, University of Oxford, Oxford, Oxfordshire, UK
Mounce, Ginny ; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, Oxfordshire, UK
Roseman, Fenella; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, Oxfordshire, UK
De La Horra Gozalo, Arancha; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, Oxfordshire, UK
Bland, James; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, Oxfordshire, UK
Taj, Nazia; Oxford Screening Laboratory, Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
Smith, Ian; Oxford Screening Laboratory, Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
Ziegler, Anette-Gabriele; Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany ; Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
Bonifacio, Ezio; Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
Winkler, Christiane; Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
Haupt, Florian; Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
Todd, John A; Wellcome Centre for Human Genetics, University of Oxford Nuffield Department of Medicine, Oxford, Oxfordshire, UK ; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Servais, Laurent ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pédiatrie ; MDUK Neuromuscular Centre, University of Oxford Department of Paediatrics, Oxford, Oxfordshire, UK
Snape, Matthew D; Oxford Vaccine Group, University of Oxford, Oxford, Oxfordshire, UK ; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Vatish, Manu; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, Oxfordshire, UK manu.vatish@wrh.ox.ac.uk ; Wellcome Centre for Human Genetics, University of Oxford Nuffield Department of Medicine, Oxford, Oxfordshire, UK
Livingstone SJ, Levin D, Looker HC, et al. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA 2015; 313: 37-44. doi:10.1001/jama.2014.16425 http://www.ncbi.nlm.nih.gov/pubmed/25562264
International Diabetes Federation. International Diabetes Federation diabetes atlas. 8th edn, 2017.
Egro FM. Why is type 1 diabetes increasing? J Mol Endocrinol 2013; 51: R1-13. doi:10.1530/JME-13-0067 http://www.ncbi.nlm.nih.gov/pubmed/23733895
Patterson CC, Dahlquist GG, Gyürüs E, et al. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: A multicentre prospective registration study. The Lancet 2009; 373: 2027-33. doi:10.1016/S0140-6736(09)60568-7
Mayer-Davis EJ, Lawrence JM, Dabelea D, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med 2017; 376: 1419-29. doi:10.1056/NEJMoa1610187 http://www.ncbi.nlm.nih.gov/pubmed/28402773
Diabetes Epidemiology Research International Group. Secular trends in incidence of childhood IDDM in 10 countries. Diabetes 1990; 39: 858-64. doi:10.2337/diab.39.7.858
TEDDY Study Group. The environmental determinants of diabetes in the young (TEDDY) study. Ann N Y Acad Sci 2008; 1150: 1-13. doi:10.1196/annals.1447.062
Rewers M, Hyöty H, Lernmark Åke, et al. The Environmental Determinants of Diabetes in the Young (TEDDY) Study: 2018 update. Curr Diab Rep 2018; 18: 136. doi:10.1007/s11892-018-1113-2 http://www.ncbi.nlm.nih.gov/pubmed/30353256
Ziegler A-G, Bonifacio E, BABYDIAB-BABYDIET Study Group. Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia 2012; 55: 1937-43. doi:10.1007/s00125-012-2472-x http://www.ncbi.nlm.nih.gov/pubmed/22289814
Parikka V, Näntö-Salonen K, Saarinen M, et al. Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 2012; 55: 1926-36. doi:10.1007/s00125-012-2523-3 http://www.ncbi.nlm.nih.gov/pubmed/22441569
Krischer JP, Lynch KF, Schatz DA, et al. The 6 year incidence of diabetes-Associated autoantibodies in genetically at-risk children: The TEDDY study. Diabetologia 2015; 58: 980-7. doi:10.1007/s00125-015-3514-y http://www.ncbi.nlm.nih.gov/pubmed/25660258
Dayan CM, Besser REJ, Oram RA, et al. Preventing type 1 diabetes in childhood. Science 2021; 373: 506-10. doi:10.1126/science.abi4742 http://www.ncbi.nlm.nih.gov/pubmed/34326231
Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997; 15: 289-92. doi:10.1038/ng0397-289 http://www.ncbi.nlm.nih.gov/pubmed/9054944
Barratt BJ, Payne F, Lowe CE, et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes 2004; 53: 1884-9. doi:10.2337/diabetes.53.7.1884 http://www.ncbi.nlm.nih.gov/pubmed/15220214
Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 2015; 372: 803-13. doi:10.1056/NEJMoa1414850 http://www.ncbi.nlm.nih.gov/pubmed/25705822
Ziegler AG, Danne T, Dunger DB, et al. Primary prevention of beta-cell autoimmunity and type 1 diabetes-The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) perspectives. Mol Metab 2016; 5: 255-62. doi:10.1016/j.molmet.2016.02.003 http://www.ncbi.nlm.nih.gov/pubmed/27069865
Ziegler A-G, Achenbach P, Berner R, et al. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: The GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. BMJ Open 2019; 9: e028578. doi:10.1136/bmjopen-2018-028578 http://www.ncbi.nlm.nih.gov/pubmed/31256036
Ahmed Delli J J, Ivarsson S-A, RICHARD HOLT IG IG. Åke Lernmark Autoimmune type 1 diabetes. In: Textbook of diabetes. 4th edition. Oxford:
Winkler C, Haupt F, Heigermoser M, et al. Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials-GPPAD-02 study design and first results. Pediatr Diabetes 2019; 20: 720-7. doi:10.1111/pedi.12870 http://www.ncbi.nlm.nih.gov/pubmed/31192505
Bonifacio E. Predicting type 1 diabetes using biomarkers. Diabetes Care 2015; 38: 989-96. doi:10.2337/dc15-0101 http://www.ncbi.nlm.nih.gov/pubmed/25998291
Cooper JD, Smyth DJ, Smiles AM, et al. Meta-Analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 2008; 40: 1399-401. doi:10.1038/ng.249 http://www.ncbi.nlm.nih.gov/pubmed/18978792
Lambert AP, Gillespie KM, Thomson G, et al. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: A population-based study in the United Kingdom. J Clin Endocrinol Metab 2004; 89: 4037-43. doi:10.1210/jc.2003-032084 http://www.ncbi.nlm.nih.gov/pubmed/15292346
Valdes AM, Erlich HA, Carlson J, et al. Use of class I and class II HLA loci for predicting age at onset of type 1 diabetes in multiple populations. Diabetologia 2012; 55: 2394-401. doi:10.1007/s00125-012-2608-z http://www.ncbi.nlm.nih.gov/pubmed/22706720
Winkler C, Krumsiek J, Buettner F, et al. Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. Diabetologia 2014; 57: 2521-9. doi:10.1007/s00125-014-3362-1 http://www.ncbi.nlm.nih.gov/pubmed/25186292
Bonifacio E, Beyerlein A, Hippich M, et al. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Med 2018; 15: e1002548. doi:10.1371/journal.pmed.1002548 http://www.ncbi.nlm.nih.gov/pubmed/29614081
Public Health England. Newborn blood spot screening programme in the UK. data collection and performance analysis report 2016 to 2017, 2018.
Warncke K, Weiss A, Achenbach P. Elevations in blood glucose before and after the appearance of islet autoantibodies in children. JCI.
Ziegler A-G, Arnolds S, Kölln A, et al. Supplementation with Bifidobacterium longum subspecies infantis EVC001 for mitigation of type 1 diabetes autoimmunity: The GPPAD-SINT1A randomised controlled trial protocol. BMJ Open 2021; 11: e052449. doi:10.1136/bmjopen-2021-052449 http://www.ncbi.nlm.nih.gov/pubmed/34753762
Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag 2019; 15: 1153-61. doi:10.2147/TCRM.S172291 http://www.ncbi.nlm.nih.gov/pubmed/31632042
De Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019; 29: 842-56. doi:10.1016/j.nmd.2019.09.007 http://www.ncbi.nlm.nih.gov/pubmed/31704158
University of Oxford, Dpeartment of Paediatrics. First UK pilot study of newborn screening for spinal muscular atrophy (SMA) launched in Oxford, 2022. Available: https://www.paediatrics.ox.ac.uk/news/first-uk-pilot-study-of-newborn-screening-for-spinal-muscular-Atrophy-sma-launched-in-oxford [Accessed. Available from 6 Mar 2022 ].
Boemer F, Caberg J-H, Beckers P, et al. Three years pilot of spinal muscular atrophy newborn screening turned into official program in southern Belgium. Sci Rep 2021; 11: 19922. doi:10.1038/s41598-021-99496-2 http://www.ncbi.nlm.nih.gov/pubmed/34620959
Dangouloff T, Burghes A, Tizzano EF, et al. 244th ENMC international workshop: newborn screening in spinal muscular atrophy May 10-12, 2019, Hoofdorp, The Netherlands. Neuromuscul Disord 2020; 30: 93-103. doi:10.1016/j.nmd.2019.11.002 http://www.ncbi.nlm.nih.gov/pubmed/31882184
Vill K, Kölbel H, Schwartz O, et al. One year of newborn screening for SMA-results of a German pilot project. J Neuromuscul Dis 2019; 6: 503-15. doi:10.3233/JND-190428 http://www.ncbi.nlm.nih.gov/pubmed/31594245
Kay DM, Stevens CF, Parker A, et al. Implementation of population-based newborn screening reveals low incidence of spinal muscular atrophy. Genet Med 2020; 22: 1296-302. doi:10.1038/s41436-020-0824-3 http://www.ncbi.nlm.nih.gov/pubmed/32418989
Dangouloff T, Vrščaj E, Servais L, et al. Newborn screening programs for spinal muscular atrophy worldwide: where we stand and where to go. Neuromuscul Disord 2021; 31: 574-82. doi:10.1016/j.nmd.2021.03.007 http://www.ncbi.nlm.nih.gov/pubmed/33985857
UK National Screening Commitee. Guidance: criteria for a population screening programme, 2022.
Genomics England. Newborn Genomes Programme Continuing the conversation about offering whole genome sequencing (WGS) to all newborns. In: Newborn genomes programme vision. England G, 2021.
Hopkin H, Kinsella S, Evans G. Implications of whole genome sequencing for newborn screening. London: