Episodic memory; fMRI; Temporal structure; Event segmentation; Scene construction
Abstract :
[en] The continuous flow of experience that characterizes real-life events is not recorded as such in episodic memory but is condensed as a succession of event segments separated by temporal discontinuities. To unravel the neural basis of this representational structure, we recorded real-life events using wearable camera technology and used fMRI to investigate brain activity during their temporal unfolding in memory. We found that, compared to the representation of static scenes in memory, dynamically unfolding memory representations were associated with greater activation of the posterior medial episodic network. Strikingly, by analyzing the autocorrelation of brain activity patterns at successive time points throughout the retrieval period, we found that this network showed higher temporal dynamics when recalling events that included a higher density of event segments. These results reveal the key role of the posterior medial network in representing the dynamic unfolding of the event segments that constitute real-world memories.
Research Center/Unit :
PsyNCog - Psychologie et Neuroscience Cognitives - ULiège
Jeunehomme, Olivier ✱; Université de Liège - ULiège > Département de Psychologie
Heinen, Rebekka ✱; Ruhr University Bochum > Faculty of Psychology > Department of Neuropsychology, Institute of Cognitive Neuroscience
Stawarczyk, David ; Université de Liège - ULiège > Département de Psychologie ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog)
Axmacher, Nikolai; Ruhr University Bochum > Faculty of Psychology > Department of Neuropsychology, Institute of Cognitive Neuroscience
D'Argembeau, Arnaud ; Université de Liège - ULiège > Département de Psychologie ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog)
✱ These authors have contributed equally to this work.
Language :
English
Title :
Representational dynamics of memories for real-life events
Publication date :
2022
Journal title :
iScience
eISSN :
2589-0042
Publisher :
Elsevier, Cambridge, United States - Massachusetts
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Moscovitch, M., Cabeza, R., Winocur, G., Nadel, L., Episodic memory and beyond: the Hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67 (2016), 105–134, 10.1146/annurev-psych-113011-143733.
Schacter, D.L., Norman, K.A., Koutstaal, W., The cognitive neuroscience of constructive memory. Annu. Rev. Psychol. 49 (1998), 289–318, 10.1146/annurev.psych.49.1.289.
Tulving, E., Episodic memory: from mind to brain. Annu. Rev. Psychol. 53 (2002), 1–25.
Clewett, D., Davachi, L., The ebb and flow of experience determines the temporal structure of memory. Curr. Opin. Behav. Sci. 17 (2017), 186–193, 10.1016/j.cobeha.2017.08.013.
Radvansky, G.A., Zacks, J.M., Event boundaries in memory and cognition. Curr. Opin. Behav. Sci. 17 (2017), 133–140, 10.1016/j.cobeha.2017.08.006.
Anderson, S.J., Conway, M.A., Investigating the structure of autobiographical memories. J. Exp. Psychol. Learn. Mem. Cognit. 19 (1993), 1178–1196, 10.1037/0278-7393.19.5.1178.
Radvansky, G.A., Copeland, D.E., Zwaan, R.A., A novel study: investigating the structure of narrative and autobiographical memories. Memory 13 (2005), 796–814, 10.1080/09658210444000412.
Folville, A., Jeunehomme, O., Bastin, C., D'Argembeau, A., The impact of age on the temporal compression of daily life events in episodic memory. Psychol. Aging 35 (2020), 484–496, 10.1037/pag0000456.
Jeunehomme, O., Folville, A., Stawarczyk, D., Van der Linden, M., D'Argembeau, A., Temporal compression in episodic memory for real-life events. Memory 26 (2018), 759–770, 10.1080/09658211.2017.1406120.
Jeunehomme, O., D'Argembeau, A., Event segmentation and the temporal compression of experience in episodic memory. Psychol. Res. 84 (2020), 481–490.
Bonasia, K., Blommesteyn, J., Moscovitch, M., Memory and navigation: compression of space varies with route length and turns. Hippocampus 26 (2016), 9–12, 10.1002/hipo.22539.
Jeunehomme, O., D'Argembeau, A., The time to remember: temporal compression and duration judgements in memory for real-life events. Q. J. Exp. Psychol. 72 (2019), 930–942, 10.1177/1747021818773082.
Michelmann, S., Staresina, B.P., Bowman, H., Hanslmayr, S., Speed of time-compressed forward replay flexibly changes in human episodic memory. Nat. Human Behav. 3 (2019), 143–154, 10.1038/s41562-018-0491-4.
Conway, M.A., Memory and the self. J. Mem. Lang. 53 (2005), 594–628.
Benoit, R.G., Schacter, D.L., Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75 (2015), 450–457.
Cabeza, R., St Jacques, P., Functional neuroimaging of autobiographical memory. Trends Cognit. Sci. 11 (2007), 219–227.
Kim, H., A dual-subsystem model of the brain's default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval. Neuroimage 61 (2012), 966–977.
McDermott, K.B., Szpunar, K.K., Christ, S.E., Laboratory-based and autobiographical retrieval tasks differ substantially in their neural substrates. Neuropsychologia 47 (2009), 2290–2298.
Svoboda, E., McKinnon, M.C., Levine, B., The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44 (2006), 2189–2208.
Hassabis, D., Maguire, E.A., Deconstructing episodic memory with construction. Trends Cognit. Sci. 11 (2007), 299–306.
Hassabis, D., Kumaran, D., Maguire, E.A., Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27 (2007), 14365–14374.
Baldassano, C., Chen, J., Zadbood, A., Pillow, J.W., Hasson, U., Norman, K.A., Discovering event structure in continuous narrative perception and memory. Neuron 95 (2017), 709–721.e5, 10.1016/j.neuron.2017.06.041.
Ben-Yakov, A., Dudai, Y., Constructing realistic engrams: poststimulus activity of Hippocampus and dorsal striatum predicts subsequent episodic memory. J. Neurosci. 31 (2011), 9032–9042, 10.1523/JNEUROSCI.0702-11.2011.
Ben-Yakov, A., Henson, R.N., The hippocampal film editor: sensitivity and specificity to event boundaries in continuous experience. J. Neurosci. 38 (2018), 10057–10068, 10.1523/JNEUROSCI.0524-18.2018.
DuBrow, S., Davachi, L., Temporal binding within and across events. Neurobiol. Learn. Mem. 134 (2016), 107–114, 10.1016/j.nlm.2016.07.011.
Musz, E., Chen, J., Neural signatures associated with temporal compression in the verbal retelling of past events. Commun. Biol. 5 (2022), 489–514, 10.1038/s42003-022-03418-5.
Jeunehomme, O., D'Argembeau, A., Memory editing: the role of temporal discontinuities in the compression of events in episodic memory. J. Exp. Psychol. Learn. Mem. Cogn., 2022 (in press).
Nielson, D.M., Smith, T.A., Sreekumar, V., Dennis, S., Sederberg, P.B., Human hippocampus represents space and time during retrieval of real-world memories. Proc. Natl. Acad. Sci. USA 112 (2015), 11078–11083, 10.1073/pnas.1507104112.
Stawarczyk, D., Jeunehomme, O., D'Argembeau, A., Differential contributions of default and dorsal attention networks to remembering thoughts and external stimuli from real-life events. Cerebr. Cortex 28 (2018), 4023–4035, 10.1093/cercor/bhx270.
Chow, T.E., Rissman, J., Neurocognitive mechanisms of real-world autobiographical memory retrieval: insights from studies using wearable camera technology. Ann. N. Y. Acad. Sci. 1396 (2017), 202–221, 10.1111/nyas.13353.
Shamay-Tsoory, S.G., Mendelsohn, A., Real-life neuroscience: an ecological approach to brain and behavior research. Perspect. Psychol. Sci. 14 (2019), 841–859, 10.1177/1745691619856350.
Zimmer, H.D., Helstrup, T., Nilsson, L.-G., Action events in everyday life and their remembering. Everyday memory, 2007, Psychology Press, 57–91.
Tversky, B., Zacks, J.M., Lee, P., Events by hands and feet. Spatial Cognit. Comput. 4 (2004), 5–14, 10.1207/s15427633scc0401_2.
Ranganath, C., Ritchey, M., Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13 (2012), 713–726.
Ritchey, M., Cooper, R.A., Deconstructing the posterior medial episodic network. Trends Cognit. Sci. 24 (2020), 451–465, 10.1016/j.tics.2020.03.006.
Stawarczyk, D., Bezdek, M.A., Zacks, J.M., Event representations and predictive processing: the role of the midline default network core. Top. Cogn. Sci. 13 (2021), 164–186, 10.1111/tops.12450.
Cavanna, A.E., Trimble, M.R., The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129 (2006), 564–583, 10.1093/brain/awl004.
D'Argembeau, A., Jeunehomme, O., Stawarczyk, D., Slices of the past: how events are temporally compressed in episodic memory. Memory 30 (2022), 43–48, 10.1080/09658211.2021.1896737.
Hebscher, M., Ibrahim, C., Gilboa, A., Precuneus stimulation alters the neural dynamics of autobiographical memory retrieval. Neuroimage, 210, 2020, 116575, 10.1016/j.neuroimage.2020.116575.
Aly, M., Chen, J., Turk-Browne, N.B., Hasson, U., Learning naturalistic temporal structure in the posterior medial network. J. Cognit. Neurosci. 30 (2018), 1345–1365, 10.1162/jocn_a_01308.
Kwok, S.C., Shallice, T., Macaluso, E., Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval. Neuropsychologia 50 (2012), 2943–2955, 10.1016/j.neuropsychologia.2012.07.025.
Vilberg, K.L., Rugg, M.D., Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia 45 (2007), 2216–2225, 10.1016/j.neuropsychologia.2007.02.027.
Cabeza, R., Ciaramelli, E., Moscovitch, M., Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cognit. Sci. 16 (2012), 338–352.
Seghier, M.L., The Angular Gyrus: Multiple functions and multiple subdivisions. Neuroscientist 19 (2013), 43–61.
Ramanan, S., Piguet, O., Irish, M., Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. Neuroscientist 24 (2018), 342–352, 10.1177/1073858417735514.
Epstein, R.A., Patai, E.Z., Julian, J.B., Spiers, H.J., The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20 (2017), 1504–1513, 10.1038/nn.4656.
Park, S., Chun, M.M., Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47 (2009), 1747–1756, 10.1016/j.neuroimage.2009.04.058.
Epstein, R., Graham, K.S., Downing, P.E., Viewpoint-specific scene representations in human parahippocampal cortex. Neuron 37 (2003), 865–876, 10.1016/s0896-6273(03)00117-x.
Bellmund, J.L.S., Polti, I., Doeller, C.F., Sequence memory in the hippocampal-entorhinal region. J. Cognit. Neurosci. 32 (2020), 2056–2070.
Clewett, D., DuBrow, S., Davachi, L., Transcending time in the brain: how event memories are constructed from experience. Hippocampus 29 (2019), 162–183, 10.1002/hipo.23074.
Lee, H., Bellana, B., Chen, J., What can narratives tell us about the neural bases of human memory?. Curr. Opin. Behav. Sci. 32 (2020), 111–119, 10.1016/j.cobeha.2020.02.007.
Vilberg, K.L., Rugg, M.D., The neural correlates of recollection: transient versus sustained FMRI effects. J. Neurosci. 32 (2012), 15679–15687, 10.1523/JNEUROSCI.3065-12.2012.
Hirshhorn, M., Grady, C., Rosenbaum, R.S., Winocur, G., Moscovitch, M., The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: a longitudinal fMRI study. Hippocampus 22 (2012), 842–852, 10.1002/hipo.20944.
Michelmann, S., Hasson, U., Norman, K., Event boundaries are steppingstones for memory retrieval. Preprint at PsyArXiv, 2021, 10.31234/osf.io/k8j94.
Geerligs, L., van Gerven, M., Güçlü, U., Detecting neural state transitions underlying event segmentation. Neuroimage, 236, 2021, 118085, 10.1016/j.neuroimage.2021.118085.
Field, A.P., Wilcox, R.R., Robust statistical methods: a primer for clinical psychology and experimental psychopathology researchers. Behav. Res. Ther. 98 (2017), 19–38, 10.1016/j.brat.2017.05.013.
Erceg-Hurn, D.M., Mirosevich, V.M., Modern robust statistical methods: an easy way to maximize the accuracy and power of your research. Am. Psychol. 63 (2008), 591–601, 10.1037/0003-066X.63.7.591.
R Core Team. R: A Language and Environment for Statistical Computing. 2021, R Core Team.
Wilcox, R.R., Introduction to Robust Estimation and Hypothesis Testing. 3rd edition, 2012, Academic Press.
Andersson, J.L., Hutton, C., Ashburner, J., Turner, R., Friston, K., Modeling geometric deformations in EPI time series. Neuroimage 13 (2001), 903–919.
Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., Turner, R., Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 16 (2002), 217–240.
Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., Permutation inference for the general linear model. Neuroimage 92 (2014), 381–397, 10.1016/j.neuroimage.2014.01.060.
Smith, S.M., Nichols, T.E., Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44 (2009), 83–98, 10.1016/j.neuroimage.2008.03.061.
Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31 (2006), 968–980, 10.1016/j.neuroimage.2006.01.021.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.