Antibiotic resistance; Antibiotics; Bioaccumulation; Contaminants of emerging concern; Macro- and microplastics; Pathogenic protozoa; PIREN-Seine; Poly- and perfluoroalkyl substances; Sediment; Water; Zone Atelier Seine; Environmental Chemistry; Water Science and Technology; Waste Management and Disposal; Pollution
Abstract :
[en] For over 30 years, the sources and the transfer dynamics of micropollutants have been investigated in the PIREN-Seine programme. Recent works included a wide range of chemicals and biological contaminants of emerging concern (i.e. contaminants whose occurrence, fate and impact are scarcely documented). This chapter presents a brief overview of research recently conducted on contaminants as diverse as macro- and microplastics, poly- and perfluoroalkyl substances (PFASs), pathogenic protozoa, antibiotics and the associated antibiotic resistance. The multiscalar study of plastics and PFASs at a large spatial scale is rare; the results produced in recent years on the Seine River catchment have provided an original contribution to the investigation of the dynamics of these contaminants in urban environments. The results also highlighted that pathogenic protozoa are ubiquitous in the Seine River basin and that the contamination of bivalves such as Dreissena polymorpha could reflect the ambient biological contamination of watercourses. The widespread occurrence of antibiotics in the Seine River was demonstrated, and it was shown that the resistome of biofilms in highly urbanised rivers constitutes a microenvironment where genetic support for antibiotic resistance (clinical integrons) and resistance genes for trace metals are concentrated.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Labadie, Pierre; UMR 5805 EPOC, CNRS, Université de Bordeaux, Talence, France
Alligant, Soline; LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, Créteil Cedex, France
Berthe, Thierry; Université de Rouen, UMR CNRS 6143 M2C, FED SCALE 4116, UFR des Sciences, Mont Saint-Aignan Cedex, France ; Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619 METIS, Paris, France
Budzinski, Hélène; UMR 5805 EPOC, CNRS, Université de Bordeaux, Talence, France
Bigot-Clivot, Aurélie; Université de Reims Champagne Ardenne, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UMR-I 02 (SEBIO), Reims, France
Collard, France ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique ; LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, Créteil Cedex, France
Dris, Rachid; LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, Créteil Cedex, France
Gasperi, Johnny; LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, Créteil Cedex, France
Guigon, Elodie; Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619 METIS, Paris, France
Petit, Fabienne; Université de Rouen, UMR CNRS 6143 M2C, FED SCALE 4116, UFR des Sciences, Mont Saint-Aignan Cedex, France ; Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619 METIS, Paris, France
Rocher, Vincent; SIAAP, Direction Innovation et Environnement, Colombes, France
Tassin, Bruno; LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, Créteil Cedex, France
Tramoy, Romain; LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, Créteil Cedex, France
Treilles, Robin; LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, Créteil Cedex, France
Acknowledgments The authors would like to acknowledge the support of EPHE and R2DS Ile-de-France (i.e. Paris regional research network on sustainable development), which both provided a PhD grant. The authors would also like to thank the Aquitaine Region and the European Union (CPER A2E project) for their financial support, as well as the French National Research Agency (ANR) for its funding through IdEx Bordeaux (ANR-10-IDEX-03-02, PhD grant), the Investments for the Future Program (Cluster of Excellence COTE, ANR-10-LABX-45) and the SEQUADAPT project (headed by L. Fechner). The authors wish to thank Marie Cécile Ploy (UMR INSERM 1092) for the molecular quantification of clinical integron. This work was conducted in the framework of the PIREN-Seine research programme (www.piren-seine.fr), a component of the Zone Atelier Seine within the International Long-Term Socio Ecological Research (LTSER) network.The authors would like to acknowledge the support of EPHE and R2DS Ile-de-France (i.e. Paris regional research network on sustainable development), which both provided a PhD grant. The authors would also like to thank the Aquitaine Region and the European Union (CPER A2E project) for their financial support, as well as the French National Research Agency (ANR) for its funding through IdEx Bordeaux (ANR-10-IDEX-03-02, PhD grant), the Investments for the Future Program (Cluster of Excellence COTE, ANR-10-LABX-45) and the SEQUADAPT project (headed by L. Fechner). The authors wish to thank Marie C?cile Ploy (UMR INSERM 1092) for the molecular quantification of clinical integron. This work was conducted in the framework of the PIREN-Seine research programme (www.piren-seine.fr), a component of the Zone Atelier Seine within the International Long-Term Socio Ecological Research (LTSER) network.
Flipo N, Lestel L, Labadie P et al (2020) Trajectories of the Seine River basin. In: Flipo N, Labadie P, Lestel L (eds) The Seine River basin. Handbook of environmental chemistry. Springer, Cham. https://doi.org/10.1007/698_2019_437
Gateuille D, Gaspery J, Briand C et al (2020) Mass balance of PAHs at the scale of the Seine River basin. In: Flipo N, Labadie P, Lestel L (eds) The Seine River basin. Handbook of environmental chemistry. Springer, Cham. https://doi.org/10.1007/698_2019_382
Chevreuil M, Carru AM, Chesterikoff A et al (1995) Contamination of fish from different areas of the river Seine (France) by organic (PCB and pesticides) and metallic (Cd, Cr, Cu, Fe, Mn, Pb and Zn) micropollutants. Sci Total Environ 162:31–42
Teil M, Blanchard M, Chesterikoff A, Chevreuil M (1998) Transport mechanisms and fate of polychlorinated biphenyls in the Seine River (France). Sci Total Environ 218:103–112
Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304:838
Arthur C, Baker J, Bamford H (2008) Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris. Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine. University of Washington Tacoma campus in Tacoma, Washington
SPI – About Plastics – SPI Resin Identification Code – Guide to Correct Use. http://www. plasticsindustry.org/AboutPlastics/content.cfm?ItemNumber=823&navItemNumber=2144. Accessed 12 Apr 2016
Dris R, Gasperi J, Saad M et al (2016) Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull 104:290–293. https://doi.org/10.1016/j. marpolbul.2016.01.006
Karami A, Golieskardi A, Choo CK et al (2017) The presence of microplastics in commercial salts from different countries. Sci Rep 7:46173. https://doi.org/10.1038/srep46173
Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit Contam Part A 30:2136–2140. https://doi.org/10.1080/19440049.2013.843025
Browne MA, Dissanayake A, Galloway TS et al (2008) Ingested microscopic plastic trans-locates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031
Li J, Qu X, Su L et al (2016) Microplastics in mussels along the coastal waters of China. Environ Pollut 214:177–184. https://doi.org/10.1016/j.envpol.2016.04.012
Oßmann BE, Sarau G, Holtmannspötter H et al (2018) Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141:307–316. https://doi.org/10.1016/j.watres. 2018.05.027
Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011
Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51:6634–6647. https://doi.org/10.1021/acs.est.7b00423
Dris R, Gasperi J, Rocher V, Tassin B (2018) Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris megacity: sampling methodological aspects and flux estimations. Sci Total Environ 618:157–164. https://doi.org/10.1016/j.scitotenv.2017.11.009
Scherer C, Weber A, Lambert S, Wagner M (2018) Interactions of microplastics with freshwater biota. Freshwater microplastics. Springer, Cham, pp 153–180
Sanchez W, Bender C, Porcher J-M (2014) Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence. Environ Res 128:98– 100. https://doi.org/10.1016/j.envres.2013.11.004
European Union (2008) Directive 2008/56/EC of the european parliament and of the council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive)
Jambeck JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352
Lebreton LCM, van der Zwet J, Damsteeg J-W et al (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611. https://doi.org/10.1038/ncomms15611
Dris R (2016) First assessment of sources and fate of macro-and micro-plastics in urban hydrosystems: case of Paris megacity. Université Paris-Est, Champs-sur-Marne
Tramoy R, Gasperi J, Dris R et al (2019) Assessment of the plastic inputs from the Seine Basin to the sea using statistical and field approaches. Front Mar Sci 6:151. https://doi.org/10.3389/fmars.2019.00151
Gasperi J, Dris R, Bonin T et al (2014) Assessment of floating plastic debris in surface water along the Seine River. Environ Pollut 195:163–166. https://doi.org/10.1016/j.envpol.2014.09. 001
Buck RC, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541. https://doi.org/10.1002/ieam.258
Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342. https://doi.org/10.1021/es001834k
Kannan K, Corsolini S, Falandysz J et al (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495. https://doi.org/10.1021/es0493446
Renner R (2001) Growing concern over perfluorinated chemicals. Environ Sci Technol 35:154A–160A. https://doi.org/10.1021/es012317k
United Nations Environmental Programme (2009) Recommendations of the persistent organic pollutants review committee of stockholm convention to amend annexes A, B or C of the convention. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default. aspx
Ahrens L (2011) Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit 13:20–31. https://doi.org/10.1039/c0em00373e
Munoz G, Giraudel JL, Botta F et al (2015) Spatial distribution and partitioning behavior of selected poly-and perfluoroalkyl substances in freshwater ecosystems: a French nationwide survey. Sci Total Environ 517:48–56
Labadie P, Chevreuil M (2011) Biogeochemical dynamics of perfluorinated alkyl acids and sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions. Environ Pollut 159:3634–3639
Teil MJ, Tlili K, Blanchard M et al (2014) Polychlorinated biphenyls, polybrominated diphenyl ethers, and phthalates in roach from the Seine River basin (France): impact of densely urbanized areas. Arch Environ Contam Toxicol 66:41–57
Johnson AC (2010) Natural variations in flow are critical in determining concentrations of point source contaminants in rivers: an estrogen example. Environ Sci Technol 44:7865–7870
McLachlan MS, Holström KE, Reth M, Berger U (2007) Riverine discharge of perfluorinated carboxylates from the European continent. Environ Sci Technol 41:7260–7265
Loos R, Gawlik BM, Locoro G et al (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568
Simcik MF, Dorweiler KJ (2005) Ratio of perfluorochemical concentrations as a tracer of atmospheric deposition to surface waters. Environ Sci Technol 39:8678–8683. https://doi.org/10.1021/es0511218
Munoz G, Fechner LC, Geneste E et al (2018) Spatio-temporal dynamics of per and polyfluoroalkyl substances (PFASs) and transfer to periphytic biofilm in an urban river: case-study on the River Seine. Environ Sci Pollut Res 25:23574–23582
Sabater S, Guasch H, Ricart M et al (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434
Houde M, De Silva AO, Muir DCG, Letcher RJ (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 45:7962–7973. https://doi.org/10.1021/es104326w
Gerbersdorf SU, Cimatoribus C, Class H et al (2015) Anthropogenic trace compounds (ATCs) in aquatic habitats – research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environ Int 79:85–105
Ruhí A, Acuña V, Barceló D et al (2016) Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Sci Total Environ 540:250–259
Labadie P, Chevreuil M (2011) Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France). Environ Pollut 159:391–397
Liu C, Gin KYH, Chang VWC et al (2011) Novel perspectives on the bioaccumulation of PFCs – the concentration dependency. Environ Sci Technol 45:9758–9764. https://doi.org/10.1021/es202078n
Xia X, Rabearisoa AH, Dai Z et al (2015) Inhibition effect of Na+ and Ca2+ on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in the presence of protein. Environ Toxicol Chem 34:429–436
McMahon RF, Hunter RD, Russell-Hunter W (1974) Variation in aufwuchs at six freshwater habitats in terms of carbon biomass and of carbon: nitrogen ratio. Hydrobiologia 45:391–404
WHO (World Health Organization) (2002) Emerging issues in water and infectious disease. World Health Organization, London
Pappas G, Roussos N, Falagas ME (2009) Toxoplasmosis snapshots: global status of toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol 39:1385–1394. https://doi.org/10.1016/j.ijpara.2009.04.003
Castro-Hermida JA, Garcia-Presedo I, González-Warleta M, Mezo M (2010) Cryptosporidium and Giardia detection in water bodies of Galicia, Spain. Water Res 44:5887–5896. https://doi. org/10.1016/j.watres.2010.07.010
Figueras MJ, Borrego JJ (2010) New perspectives in monitoring drinking water microbial quality. Int J Environ Res Public Health 7:4179–4202. https://doi.org/10.3390/ijerph7124179
Chauret C, Armstrong N, Fisher J et al (1995) Correlating Cryptosporidium and Giardia with microbial indicators. Am Water Works Assoc 87:76–84
Gomez-Bautista M, Ortega-Mora LM, Tabares E et al (2000) Detection of infectious Cryptosporidium parvum oocysts in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule). Appl Environ Microbiol 66:1866–1870
Pachepsky YA, Blaustein RA, Whelan G, Shelton DR (2014) Comparing temperature effects on Escherichia coli, Salmonella, and Enterococcus survival in surface waters. Lett Appl Microbiol 59:278–283. https://doi.org/10.1111/lam.12272
Mons C, Dumètre A, Gosselin S et al (2009) Monitoring of Cryptosporidium and Giardia river contamination in Paris area. Water Res 43:211–217. https://doi.org/10.1016/j.watres.2008.10. 024
Moulin L, Richard F, Stefania S et al (2010) Contribution of treated wastewater to the microbiological quality of Seine River in Paris. Water Res 44:5222–5231. https://doi.org/10. 1016/j.watres.2010.06.037
Ayres PA, Burton HW, Cullum ML (1978) Sewage pollution and shellfish. In: Lovelock DM, Davies R (eds) Techniques for the study of mixed populations. Society for applied bacteriology technical series. Academic Press, London, pp 51–62
Palos Ladeiro M, Aubert D, Villena I et al (2014) Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring. Water Res 48:148–155. https://doi.org/10.1016/j.watres.2013.09.017
Palos Ladeiro M, Bigot-Clivot A, Aubert D et al (2015) Assessment of toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study. Environ Sci Pollut Res 22:13693–13701. https://doi.org/10.1007/s11356-015-4296-y
Pond K, Rueedi J, Pedley S (2004) Pathogens in drinking water sources. In: Microbiological risk assessment: a scientific basis for managing drinking water safety from source to tap. Robens Centre for Public and Environmental Health, University of Surrey
Olson ME, Thorlakson CL, Deselliers L et al (1997) Giardia and Cryptosporidium in Canadian farm animals. Vet Parasitol 68:375–381. https://doi.org/10.1016/S0304-4017(96)01072-2
Smith HV, Rose JB (1990) Waterborne cryptosporidiosis. Parasitol Today 6:8–12. https://doi. org/10.1016/0169-4758(90)90378-H
Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283
Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7. https://doi.org/10.1093/jac/dkg293
Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453. https://doi.org/10.1016/j.mib.2006.08.006
Baharoglu Z, Mazel D (2011) Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob Agents Chemother 55:2438–2441. https://doi.org/10.1128/AAC.01549-10
Gullberg E, Cao S, Berg OG et al (2011) Selection of resistant Bacteria at very low antibiotic concentrations. PLoS Pathog 7:e1002158. https://doi.org/10.1371/journal.ppat.1002158
Tamtam F, Mercier F, Le Bot B et al (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393:84–95. https://doi.org/10.1016/j. scitotenv.2007.12.009
Thurman EM, Dietze JE, Scribner EA (2002) Occurrence of antibiotics in water from fish hatcheries. U.S. Department of the Interior/U.S. Geological Survey, USGS Fact Sheet 120-02
Dinh QT, Moreau-Guigon E, Labadie P et al (2017) Fate of antibiotics from hospital and domestic sources in a sewage network. Sci Total Environ 575:758–766. https://doi.org/10.1016/j.scitotenv.2016.09.118
Dinh QT, Moreau-Guigon E, Labadie P et al (2017) Occurrence of antibiotics in rural catchments. Chemosphere 168:483–490. https://doi.org/10.1016/j.chemosphere.2016.10.106
Rosal R, Rodríguez A, Perdigón-Melón JA et al (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44:578–588. https://doi.org/10.1016/j.watres.2009.07.004
Gros M, Petrović M, Barceló D (2009) Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/Quadrupole-linear ion trap mass spectrometry and automated library searching. Anal Chem 81:898–912. https://doi.org/10. 1021/ac801358e
Servais P, Passerat J (2009) Antimicrobial resistance of fecal bacteria in waters of the Seine river watershed (France). Sci Total Environ 408:365–372. https://doi.org/10.1016/j.scitotenv. 2009.09.042
Kovac Virsek M, Hubad B, Lapanje A (2013) Mercury induced community tolerance in microbial biofilms is related to pollution gradients in a long-term polluted river. Aquat Toxicol 144–145:208–217. https://doi.org/10.1016/j.aquatox.2013.09.023
Aubertheau E, Stalder T, Mondamert L et al (2017) Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Sci Total Environ 579:1387–1398. https://doi.org/10.1016/j.scitotenv.2016.11.136
Marti E, Jofre J, Balcazar JL (2013) Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS One 8: e78906. https://doi.org/10.1371/journal.pone.0078906
Koczura R, Mokracka J, Taraszewska A, Łopacinska N (2016) Abundance of Class 1 Integron-Integrase and sulfonamide resistance genes in river water and sediment is affected by anthropogenic pressure and environmental factors. Microb Ecol 72:909–916. https://doi.org/10.1007/s00248-016-0843-4
Gillings MR, Gaze WH, Pruden A et al (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269–1279
Borruso L, Harms K, Johnsen PJ et al (2016) Distribution of class 1 integrons in a highly impacted catchment. Sci Total Environ 566–567:1588–1594. https://doi.org/10.1016/j. scitotenv.2016.06.054
Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399. https://doi. org/10.3389/fmicb.2012.00399
Di Cesare A, Eckert E, Corno G (2016) Co-selection of antibiotic and heavy metal resistance in freshwater bacteria. J Limnol 75. https://doi.org/10.4081/jlimnol.2016.1198
Fechner LC, Gourlay-Francé C, Bourgeault A, Tusseau-Vuillemin M-H (2012) Diffuse urban pollution increases metal tolerance of natural heterotrophic biofilms. Environ Pollut 162:311– 318. https://doi.org/10.1016/j.envpol.2011.11.033
Bonnard M, Barijhoux L, Dedrouge-Geffard O et al (2020) Experience gained from ecotoxicological studies in the Seine River and its drainage basin over the last decade: applicative examples and research perspectives. In: Flipo N, Labadie P, Lestel L (eds) The Seine River basin. Handbook of environmental chemistry. Springer, Cham. https://doi.org/10.1007/698_ 2019_384