Sechelleptus arborivagus Sp. Nov., a new arboreal spirostreptid millipede (diplopoda, spirostreptidae) endemic to Mayotte island (comoros archipelago), Indian Ocean
Comoros archipelagos; New species; Phylogeny; Taxonomy; Ecology, Evolution, Behavior and Systematics
Abstract :
[en] A new millipede species of the genus Sechelleptus Mauriès, 1980 is described and illustrated from Mayotte Island, Indian Ocean. This new species, S. arborivagus sp. nov., found on trees, looks particularly similar to the sympatric S. variabilis VandenSpiegel & Golovatch, 2007, but is much larger and has a very different ecological behavior. Phylogenetic analyses based on a concatenated dataset of the COI and 16S rRNA genes and including nine species of Spirostreptidae (including Sechelleptus, Doratogonus Attems, 1914, Bicoxidens Attems, 1928 and Spirostreptus Brandt, 1833), strongly support the monophyly of Sechelleptus. Despite the similarity of their genitalia, the molecular analyses also reveal a clear-cut genetic divergence between S. arborivagus sp. nov. and S. variabilis (22.55% for COI and 6.63% for 16SrRNA) and further suggest the presence of a higher diversity within the genus Sechelleptus on Mayotte.
Disciplines :
Zoology
Author, co-author :
Vandenspiegel, Didier; Biological Collection and Data Management Unit, Royal Museum for Central Africa, Tervuren, Belgium
Henrard, Arnaud; Biological Collection and Data Management Unit, Royal Museum for Central Africa, Tervuren, Belgium
Mathys, Aurore ; Université de Liège - ULiège > Unités de recherche interfacultaires > Art, Archéologie et Patrimoine (AAP) ; Biological Collection and Data Management Unit, Royal Museum for Central Africa, Tervuren, Belgium ; Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Language :
English
Title :
Sechelleptus arborivagus Sp. Nov., a new arboreal spirostreptid millipede (diplopoda, spirostreptidae) endemic to Mayotte island (comoros archipelago), Indian Ocean
This work was supported by the ‘Ministère de la transition écologique et solidaire - France’. Present sampling was performed in the framework of the program “Acquisition de connaissances sur les myriapodes de Mayotte” (convention N° 2019-003/DEAL/SEPR) organized by the DEAL at Mayotte. We are grateful to Antoine Rouillé for his help in the organization of the sampling and Miguel Lamalfa-Diaz who guided us on the Mt. Tchaourembo. We are grateful to Alain Reygel for the drawings and Dr Sergei Golovatch for his kind advice on an early draft.
Adams D.C., Berns C.M., Kozak K.H. & Wiens J.J. 2009. Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society B 276 (1668): 2729–2738. https://doi.org/10.1098/rspb.2009.0543
Bond J.E. & Sierwald P. 2002. Cryptic speciation in the Anadenobolus excisus millipede species complex on the Island of Jamaica. Evolution 56: 1123–1135. https://doi.org/10.1111/j.0014-3820.2002.tb01426.x
Bond J.E., Beamer B.A., Hedin M.C. & Sierwald P. 2003. Gradual evolution of male genitalia in sibling species complex of millipedes (Diplopoda: Spirobolida: Rhinocricidae: Anadenobolus). Invertebrate Systematics 17: 711–717. https://doi.org/10.1071/IS03026
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
Desjardins M. 1835. Description d’un insecte myriapode du genre Julus. Annales de la Société entomologique de France Séries 1 4: 171–174.
Edgecombe G.D. & Giribet G. 2004. Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda, Chilopoda): an analysis of morphology and four molecular loci. Journal of Zoological Systematics and Evolutionary Research 42: 89–134. https://doi.org/10.1111/j.1439-0469.2004.00245.x
Enghoff I.B. & Enghoff H. 1976. Notes on myriapods observed and collected in Tanzania and Kenya during the summer 1974. Xeroxed report, Zoological Museum, University of Copenhagen, Copenhagen.
Enghoff H., Hoffman R.L. & Howell K.M. 2016. Checklist of the millipedes (Diplopoda) of Tanzania. Journal of East African Natural History 105 (1): 51–113. https://doi.org/10.2982/028.105.0103
Golovatch S.I. & Korsós Z. 1992. Diplopoda collected by the Soviet zoological expedition to the Seychelles Islands in 1984. Acta Zoologica Hungarica 38: 1–31.
Hedin M.C. & Maddison W.P. 2001. A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18: 386–403. https://doi.org/10.1006/mpev.2000.0883
Hoffman R.L. 2008. Two new genera of spirostreptid millipeds from central Africa, with a new terminology for male genitalia in the family Spirostreptidae (Diplopoda Spirostreptida). Tropical Zoology 21 (2): 167–186.
Hoffman R.L. & Howell K.M. 1983. Dendrostreptus, a new genus for an arboreal Tanzanian milliped, with notes on related forms (Diplopoda: Spirostreptidae). Revue zoologique africaine 97 (3): 625–632.
Jeekel C.A.W. 1999. A new Sechelleptus from Madagascar, with a key to the species of the genus (Diplopoda-Spirostreptida). Myriapod Memoranda 1: 45–57.
Katoh K. & Standley D.M. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
Krabbe E. 1982. Systematik der Spirostreptidae (Diplopoda, Spirostreptomorpha). Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (N.F.) 24: 1–476.
Kumar S., Stecher G., Li M., Knyaz C., & Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T. & Calcott B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34 (3): 772–773. https://doi.org/10.1093/molbev/msw260
Lartillot N., Lepage T. & Blanquart S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25 (17): 2286–2288. https://doi.org/10.1093/bioinformatics/btp368
Lavrov D.V., Boore J.L. & Brown W.M. 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Molecular Biology and Evolution 19 (2): 163–169. https://doi.org/10.1093/oxfordjournals.molbev.a004068
Maddison W.P. & Maddison D.R. 2018. Mesquite: a modular system for evolutionary analysis. Version 3.5. Program and documentation available from the authors at http://www.mesquiteproject.org [accessed May 2018].
Mauriès J.-P. 1980. Contributions à l’étude de la faune terrestre des îles granitiques de l’archipel des Séchelles (Mission P.L.G. Benoit – J.J. Van Mol 1972). Myriapoda – Diplopoda. Revue zoologique africaine 94 (1): 138–168.
Miller M.A., Pfeiffer W. & Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE): 1–8. https://doi.org/10.1109/GCE.2010.5676129
Mwabvu T., Lamb J., Slotow R., Hamer M. & Barraclough D. 2013. Is millipede taxonomy based on gonopod morphology too inclusive? Observations on genetic variation and cryptic speciation in Bicoxidens flavicollis (Diplopoda: Spirostreptida: Spirostreptidae). African Invertebrates 54: 349–356. https://doi.org/10.5733/afin.054.0203
Mwabvu T., Lamb J., Slotow R., Hamer M. & Barraclough D. 2015. Do cytochrome c oxidase 1 gene sequences differentiate species of spirostreptid millipedes (Diplopoda: Spirostreptida: Spirostreptidae)? African Invertebrates 56: 651–661. https://doi.org/10.5733/afin.056.0311
Pimvichaia P., Enghoff H. & Panha S. 2014. Molecular phylogeny of the Thyropygus allevatus group of giant millipedes and some closely related groups. Molecular Phylogenetics and Evolution 71: 170–183. https://doi.org/10.1016/j.ympev.2013.11.006
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029
Sierwald P. & Spelda J. 2021. MilliBase. https://doi.org/10.14284/370
Simon C., Frati F., Beckenbach A., Crespi B., Liu H. & Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651–701. https://doi.org/10.1093/aesa/87.6.651
Stecher G., Tamura K. & Kumar S. 2020. Molecular Evolutionary Genetics Analysis (MEGA) for MacOS. Molecular Biology and Evolution 37 (4): 1237–1239. https://doi.org/10.1093/molbev/msz312
Sukumaran J. & Holder M.T. 2010. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26: 1569–1571. https://doi.org/10.1093/bioinformatics/btq228
Sukumaran J. & Holder M.T. 2015. SumTrees: phylogenetic tree summarization. 4.0.0. Program and documentation available from the authors at https://github.com/jeetsukumaran/Dendrophy [accessed Mar. 2017].
Talavera G. & Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577. https://doi.org/10.1080/10635150701472164
Tinago T., Mwabvu T. & MacDonald A. 2017. Evidence of multiple divergent mitochondrial lineages within the southern African diplopod genus Bicoxidens Attems, 1928 (Spirostreptida). African Zoology 52 (4): 229–235. https://doi.org/10.1080/15627020.2017.1387504
VandenSpiegel D. 2001. Taitastreptus flavipes, a new genus and new species for an arboreal millipede from Kenya (Diplopoda, Spirostreptidae). Insect Systematics and Evolution 32 (4): 475–480. https://doi.org/10.1163/187631201X00317
VandenSpiegel D. & Golovatch S.I. 2007. The millipedes from the Comoros Islands (Myriapoda, Diplopoda). Journal of Afrotropical Zoology 3: 41–57.
Vink C.J., Thomas M.S., Paquin P., Hayash C.Y. & Hedin M. 2005. The effects of preservatives and temperatures on arachnid DNA. Invertebrate Systematics 19 (2): 99–104. https://doi.org/10.1071/IS04039
Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis, The University of Texas at Austin, USA.