2D materials; bismuthene; density functional theory; first principles methods; quantum spin Hall; topological insulator; 2d material; Bismuthene; Density-functional-theory; Electronic.structure; First principle method; Quantum spin halls; Topological bands; Topological insulators; Topological phase; Topological properties; Atomic and Molecular Physics, and Optics; Materials Science (all); Condensed Matter Physics; General Materials Science
Abstract :
[en] Some metastable polymorphs of bismuth monolayers (bismuthene) can host non-trivial topological phases. However, it remains unclear whether these polymorphs can become stable through interaction with a substrate, whether their topological properties are preserved, and how to design an optimal substrate to make the topological phase more robust. Using first-principles techniques, we demonstrate that bismuthene polymorphs can become stable over silicon carbide (SiC), silicon (Si), and silicon dioxide (SiO2) and that proximity interaction in these heterostructures has a significant effect on the electronic structure of the monolayer, even when bonding is weak. We show that van der Waals interactions and the breaking of the sublattice symmetry are the main factors driving changes in the electronic structure in non-covalently binding heterostructures. Our work demonstrates that substrate interaction can strengthen the topological properties of bismuthene polymorphs and make them accessible for experimental investigations and technological applications.
Wittemeier, Nils ; Catalan Institute of Nanoscience and Nanotechnology—ICN2 (CSIC and BIST), Campus UAB, Barcelona, Spain
Ordejón, Pablo ; Catalan Institute of Nanoscience and Nanotechnology—ICN2 (CSIC and BIST), Campus UAB, Barcelona, Spain
Zanolli, Zeila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Chemistry Department, Debye Institute for Nanomaterials Science, Condensed Matter and Interfaces, Utrecht University, European Theoretical Spectroscopy Facility, Utrecht, Netherlands
Language :
English
Title :
Tuning the topological band gap of bismuthene with silicon-based substrates
H2020 - 754558 - PREBIST - COFUND BIST PREDOCTORAL PROGRAMME H2020 - 730897 - HPC-EUROPA3 - Transnational Access Programme for a Pan-European Network of HPC Research Infrastructures and Laboratories for scientific computing
Funders :
CERCA - Centres de Recerca de Catalunya EU - European Union AEI - Agencia Estatal de Investigación MINECO - Gobierno de Espana. Ministerio de Economia y Competitividad FEDER - Fonds Européen de Développement Régional PRACE - Partnership for Advanced Computing in Europe BSC - Barcelona Supercomputing Center
Funding text :
We acknowledge the CERCA programme of the Generalitat de Catalunya (Grant 2017SGR1506), and by the Severo Ochoa programme (MINECO, SEV-2017-0706). Z Z acknowledges financial support by the Ramon y Cajal program (RYC-2016-19344), the Netherlands Sector Plan program 2019–2023, and support from the Dutch Gravity program “Materials for the Quantum Age (QuMat)”. P O acknowledges support from Spanish MICIU, AEI and EU FEDER (Grant No. PGC2018-096955-B-C43) and the European Union MaX Center of Excellence (EU-H2020 Grant No. 824143). N W acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754558, and the ICN2 Severo Ochoa Outbound Mobility Programme. The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. We acknowledge computing resources on MareNostrum4 at Barcelona Supercomputing Center (BSC), provided through the PRACE Project Access (OptoSpin Project 2020225411) and RES (Activity FI-2020-1-0014), resources of SURFsara the on National Supercomputer Snellius (EINF-1858 Project) and technical support provided by the Barcelona Supercomputing Center.We acknowledge the CERCA programme of the Generalitat de Catalunya (Grant 2017SGR1506), and by the Severo Ochoa programme (MINECO, SEV-2017-0706). Z Z acknowledges financial support by the Ramon y Cajal program (RYC-2016-19344), the Netherlands Sector Plan program 2019-2023, and support from the Dutch Gravity program “Materials for the Quantum Age (QuMat)”. P O acknowledges support from Spanish MICIU, AEI and EU FEDER (Grant No. PGC2018-096955-B-C43) and the European Union MaX Center of Excellence (EU-H2020 Grant No. 824143). N W acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754558, and the ICN2 Severo Ochoa Outbound Mobility Programme. The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. We acknowledge computing resources on MareNostrum4 at Barcelona Supercomputing Center (BSC), provided through the PRACE Project Access (OptoSpin Project 2020225411) and RES (Activity FI-2020-1-0014), resources of SURFsara the on National Supercomputer Snellius (EINF-1858 Project) and technical support provided by the Barcelona Supercomputing Center.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Giustino F et al 2020 J. Phys. Mater. 3 042006 10.1088/2515-7639/abb74e
Hasan M Z Kane C L 2010 Rev. Mod. Phys. 82 3045 67 3045-67 10.1103/RevModPhys.82.3045
Qi X L Zhang S C 2011 Rev. Mod. Phys. 83 1057 110 1057-110 10.1103/RevModPhys.83.1057
Moore J E 2010 Nature 464 194 8 194-8 10.1038/nature08916
Koroteev Y M Bihlmayer G Chulkov E V Blügel S 2008 Phys. Rev. B 77 045428 10.1103/PhysRevB.77.045428
Liu Z Liu C X Wu Y S Duan W H Liu F Wu J 2011 Phys. Rev. Lett. 107 136805 10.1103/PhysRevLett.107.136805
Ma Y Li X Kou L Yan B Niu C Dai Y Heine T 2015 Phys. Rev. B 91 235306 10.1103/PhysRevB.91.235306
Zhou M Ming W Liu Z Wang Z Yao Y Liu F 2015 Sci. Rep. 4 7102 10.1038/srep07102
Singh S Zanolli Z Amsler M Belhadji B Sofo J O Verstraete M J Romero A H 2019 J. Phys. Chem. Lett. 10 7324 32 7324-32 10.1021/acs.jpclett.9b03043
Reis F Li G Dudy L Bauernfeind M Glass S Hanke W Thomale R Schäfer J Claessen R 2017 Science 357 287 90 287-90 10.1126/science.aai8142
Kawakami N Lin C L Kawai M Arafune R Takagi N 2015 Appl. Phys. Lett. 107 031602 10.1063/1.4927206
Novoselov K S Geim A K Morozov S V Jiang D Zhang Y Dubonos S V Grigorieva I V Firsov A A 2004 Science 306 666 9 666-9 10.1126/science.1102896
Soler J M Artacho E Gale J D García A Junquera J Ordejón P Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 79 2745-79 10.1088/0953-8984/14/11/302
García A et al 2020 J. Chem. Phys. 152 204108 10.1063/5.0005077
Cuadrado R Cerdá J I 2012 J. Phys.: Condens. Matter 24 086005 10.1088/0953-8984/24/8/086005
Cuadrado R Robles R García A Pruneda M Ordejón P Ferrer J Cerdá J I 2021 Phys. Rev. B 104 195104 10.1103/PhysRevB.104.195104
Hamann D R 2013 Phys. Rev. B 88 085117 10.1103/PhysRevB.88.085117
García A Verstraete M J Pouillon Y Junquera J 2018 Comput. Phys. Commun. 227 51 71 51-71 10.1016/j.cpc.2018.02.011
van Setten M Giantomassi M Bousquet E Verstraete M Hamann D Gonze X Rignanese G M 2018 Comput. Phys. Commun. 226 39 54 39-54 10.1016/j.cpc.2018.01.012
Perdew J P Burke K Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 8 3865-8 10.1103/PhysRevLett.77.3865
Dion M Rydberg H Schröder E Langreth D C Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 10.1103/PhysRevLett.92.246401
Lazić P Atodiresei N Alaei M Caciuc V Blügel S Brako R 2010 Comput. Phys. Commun. 181 371 9 371-9 10.1016/j.cpc.2009.09.016
Gresch D Autès G Yazyev O V Troyer M Vanderbilt D Bernevig B A Soluyanov A A 2017 Phys. Rev. B 95 075146 10.1103/PhysRevB.95.075146
Boys S Bernardi F 1970 Mol. Phys. 19 553 66 553-66 10.1080/00268977000101561
Quereda J Castellanos-Gomez A Agrait N Rubio-Bollinger G 2014 Appl. Phys. Lett. 105 053111 10.1063/1.4892650
Wu R et al 2016 Phys. Rev. X 6 021017 10.1103/PhysRevX.6.021017
Bieniek M Woźniak T Potasz P 2017 J. Phys.: Condens. Matter 29 155501 10.1088/1361-648X/aa5e79
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.