Breast cancer; Curcumin; Zebrafish; Micelle; Tumor spheroids; Nanotoxicity
Abstract :
[en] Although curcumin in the form of nanoparticles has been demonstrated as a potential anti-tumor compound, the impact of curcumin and nanocurcumin in vitro on normal cells and in vivo in animal models is largely unknown. This study evaluated the toxicity of curcumin-loaded micelles in vitro and in vivo on several tumor cell lines, primary stromal cells, and zebrafish embryos. Breast tumor cell line (MCF7) and stromal cells (human umbilical cord vein endothelial cells, human fibroblasts, and human umbilical cord-derived mesenchymal stem cells) were used in this study. A zebrafish embryotoxicity (FET) assay was conducted following the Organisation for Economic Co-operation and Development (OECD) Test 236. Compared to free curcumin, curcumin PM showed higher cytotoxicity to MCF7 cells in both monolayer culture and multicellular tumor spheroids. The curcumin-loaded micelles efficiently penetrated the MCF7 spheroids and induced apoptosis. The nanocurcumin reduced the viability and disturbed the function of stromal cells by suppressing cell migration and tube formation. The micelles demonstrated toxicity to the development of zebrafish embryos. Curcumin-loaded micelles demonstrated toxicity to both tumor and normal primary stromal cells and zebrafish embryos, indicating that the use of nanocurcumin in cancer treatment should be carefully investigated and controlled.
Research Center/Unit :
GIGA I3-Laboratory for Organogenesis and Regeneration -ULiège Department of Practical and Experimental Surgery, Vietnam Military Medical University, Hanoi, Vietnam Faculty of Biology, VNU University of Science, Hanoi, Vietnam Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, Hanoi, Vietnam College of Health Sciences, Vin University, Hanoi, Vietnam Department of Biology, Mount Holyoke College, MA, USA
Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022 CA Cancer J. Clin. 2022 72 7 33 10.3322/caac.21708 35020204
Yanagawa M. Ikemot K. Kawauchi S. Furuya T. Yamamoto S. Oka M. Oga A. Nagashima Y. Sasaki K. Luminal A and luminal B (HER2 negative) subtypes of breast cancer consist of a mixture of tumors with different genotype BMC Res. Notes 2012 5 376 10.1186/1756-0500-5-376 22830453
Yersal O. Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications World J. Clin. Oncol. 2014 5 412 424 10.5306/wjco.v5.i3.412 25114856
Parton M. Dowsett M. Smith I. Studies of apoptosis in breast cancer BMJ 2001 322 1528 1532 10.1136/bmj.322.7301.1528 11420276
Jerusalem G. Rorive A. Collignon J. Chemotherapy options for patients suffering from heavily pretreated metastatic breast cancer Future Oncol. 2015 11 1775 1789 10.2217/fon.15.80
Perou C.M. Sørlie T. Eisen M.B. van de Rijn M. Jeffrey S.S. Rees C.A. Pollack J.R. Ross D.T. Johnsen H. Akslen L.A. et al. Molecular portraits of human breast tumours Nature 2000 406 747 752 10.1038/35021093 10963602
Toft D.J. Cryns V.L. Minireview: Basal-like breast cancer: From molecular profiles to targeted therapies JME 2011 25 199 211 10.1210/me.2010-0164
Karunagaran D. Rashmi R. Kumar R.S.T. Induction of apoptosis by curcumin and its implications for cancer therapy Curr. Cancer Drug Targets 2005 5 117 129 10.2174/1568009053202081
Cridge B.J. Larsen L. Rosengren R.J. Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers Oncol. Discov. 2013 1 1 9 10.7243/2052-6199-1-6
Ramachandran C. Rodriguez S. Ramachandran R. Nair P.K.R. Fonseca H. Khatib Z. Escalon E. Melnick S.J. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines Anticancer Res. 2005 25 3293 3302 16101141
Ravindran J. Prasad S. Aggarwal B.B. Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? AAPS J. 2009 11 495 510 10.1208/s12248-009-9128-x 19590964
Aggarwal B.B. Kumar A. Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies Anticancer Res. 2003 23 363 398
Sahu A. Kasoju N. Goswami P. Bora U. Encapsulation of curcumin in pluronic block copolymer micelles for drug delivery applications J. Biomater. Appl. 2011 2 619 639 10.1177/0885328209357110 20207782
Mohanty C. Sahoo S.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation Biomaterials 2010 31 6597 6611 10.1016/j.biomaterials.2010.04.062
Karthikeyan A. Senthil N. Min T. Nanocurcumin: A promising candidate for therapeutic applications Front. Pharmacol. 2020 11 487 10.3389/fphar.2020.00487
Nguyen H.N. Ha P.T. Nguyen A.S. Nguyen D.T. Do H.D. Thi Q.N. Thi M.N.H. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles Adv. Nat. Sci. Nanosci. Nanotechnol. 2016 7 025001 10.1088/2043-6262/7/2/025001
Mogharbel B.F. Francisco J.C. Irioda A.C. Dziedzic D.S.M. Ferreira P.E. de Souza D. de Souza C. Neto N.B. Guarita-Souza L.C. Franco C.R.C. et al. Fluorescence properties of curcumin-loaded nanoparticles for cell tracking Int. J. Nanomed. 2018 13 5823 5836 10.2147/IJN.S171099 30319253
Wang J.B. Qi L.L. Zheng S.D. Wu T.X. Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells J. Zhejiang Univ. Sci. B 2009 10 93 102 10.1631/jzus.B0820238
Keshavarz R. Bakhshinejad B. Babashah S. Baghi N. Sadeghizadeh M. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells Iran. J. Basic Med. Sci. 2016 19 1353 1362
Cao Z. He S. Peng Y. Liao X. Lu H. Nanocurcumin inhibits angiogenesis via down-regulating hif1a/VEGF-A signaling in zebrafish Curr. Neurovasc. Res. 2020 17 147 154 10.2174/1567202617666200207130039
Kamble S.S. Utage B. Mogle P.P. Kamble R.D. Hese S.V. Dawane B.S. Gacche R.N. Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: A comparative study with native curcumin AAPS PharmSciTech 2015 17 1030 1041 10.1208/s12249-015-0435-5 26729534
Fu Z. Chen X. Guan S. Yan Y. Lin H. Hua Z.C. Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway Oncotarget 2015 6 19469 19482 10.18632/oncotarget.3625 26254223
Nelson K.M. Dahlin J.L. Bisson J. Graham J. Pauli G.F. The essential medicinal chemistry of curcumin J. Med. Chem. 2017 60 1620 1637 10.1021/acs.jmedchem.6b00975 28074653
Jasial S. Hu Y. Bajorath J. How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds J. Med. Chem. 2017 60 3879 3886 10.1021/acs.jmedchem.7b00154 28421750
Bajorath J. Evolution of assay interference concepts in drug discovery Expert Opin. Drug Discov. 2021 16 719 721 10.1080/17460441.2021.1902983 33733961
Wang K.X. Cui W.W. Yang X. Tao A.B. Lan T. Li T.S. Mesenchymal stem cells for mitigating radiotherapy side effects Cells 2021 10 294 10.3390/cells10020294 33535574
Portas M. Mansilla E. Drago H. Dubner D. Radl A. Coppola A. di Giorgio M. Use of human cadaveric mesenchymal stem cells for cell therapy of a chronic radiation-induced skin lesion: A case report Radiat. Prot. Dosim. 2016 171 99 106 10.1093/rpd/ncw206 27574323
Chapel A. Francois S. Douay L. Benderitter M. Voswinkel J. New insights for pelvic radiation disease treatment: Multipotent stromal cell is a promise mainstay treatment for the restoration of abdominopelvic severe chronic damages induced by radiotherapy World J. Stem. Cells 2013 5 106 111 10.4252/wjsc.v5.i4.106
Kursova L.V. Konoplyannikov A.G. Pasov V.V. Ivanova I. Poluektova M. Konoplyannikova O.A. Possibilities for the use of autologous mesenchymal stem cells in the therapy of radiation-induced lung injuries Bull. Exp. Biol. Med. 2009 147 542 546 10.1007/s10517-009-0538-7 19704968
Velpula N. Ugrappa S. Kodangal S. A role of radioprotective agents in cancer therapeutics: A review Int. J. Basic Clin. Pharmacol. 2013 2 677 682 10.5455/2319-2003.ijbcp20131203
Hosseini S. Chamani J. Hadipanah M.R. Ebadpour N. Hojjati A.S. Mohammadzadeh M.H. Rahimi H.R. Nano-curcumin’s suppression of breast cancer cells (MCF7) through the inhibition of cyclinD1 expression Breast Cancer Dove Med. Press 2019 11 137 142 30936742
Barbosa M.A.G. Xavier C.P.R. Pereira R.F. Petrikaitė V. Vasconcelos M.H. 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs Cancers 2021 14 190 10.3390/cancers14010190 35008353
Rodenhizer D. Dean T.A. D’Arcangelo E. McGuigan A.P. The current landscape of 3D in vitro tumor models: What cancer hallmarks are accessible for drug discovery? Adv. Healthc. Mater. 2018 7 1701174 10.1002/adhm.201701174
Hoang N.T.T. Phuong T.T. Nguyen T.T. Tran Y.T.H. Nguyen A.T.T. Nguyen T.L. Bui K.T.V. In vitro characterization of derrone as an aurora kinase inhibitor Biol. Pharm. Bull. 2016 39 935 945 10.1248/bpb.b15-00835 26983907
Thoma C.R. Zimmermann M. Agarkova I. Kelm J.M. Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery Adv. Drug Deliv. Rev. 2014 69–70 29 41 10.1016/j.addr.2014.03.001 24636868
LaBarbera D.V. Reid B.G. Yoo B.H. The multicellular tumor spheroid model for high-throughput cancer drug discovery Expert Opin. Drug Discov. 2012 7 819 830 10.1517/17460441.2012.708334 22788761
Jahani M. Rezazadeh D. Mohammadi P. Abdolmaleki A. Norooznezhad A. Mansouri K. Regenerative medicine and angiogenesis; challenges and opportunities Adv. Pharm Bull. 2020 10 490 501 10.34172/apb.2020.061 33072530
Stappenbeck T.S. Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair Science 2009 324 1666 1669 10.1126/science.1172687
Ganiger S. Malleshappa H.N. Krishnappa H. Rajashekhar G. Rao V.R. Sullivan F. A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats Food Chem. Toxicol. 2007 45 64 69 10.1016/j.fct.2006.07.016
Wu J.-Y. Lin C.-Y. Lin T.-W. Ken C.-F. Wen Y.-D. Curcumin affects development of zebrafish embryo Biol. Pharm. Bull. 2007 30 1336 1339 10.1248/bpb.30.1336
Coradini K. de Andrade D.F. Altenhofen S. Reolon G.K. Nery L.R. Silva N.E. Vianna M.R.M.R. Bonan C.D. Beck R.C.R. Free and nanoencapsulated curcumin prevents scopolamine-induced cognitive impairment in adult zebrafish J. Drug Deliv. Sci. Technol. 2021 66 102781 10.1016/j.jddst.2021.102781
Coradini K. Friedrich R.B. Fonseca F.N. Vencato M.S. Andrade D.F. Oliveira C.M. Battistel A.P. Guterres S.S. da Rocha M.I.U.M. Pohlmann A.R. et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies Eur. J. Pharm. Sci. 2015 78 163 170 10.1016/j.ejps.2015.07.012
OECD Test No. 236: Fish Embryo Acute Toxicity (FET) Test OECD Guidelines for the Testing of Chemicals, Section 2 OECD Publishing Paris, France 2013