Conceptual model; Focused recharge; Groundwater recharge; Hydrogeology; Semi-arid; Superficial geology; Water Science and Technology; Earth and Planetary Sciences (miscellaneous)
Abstract :
[en] Study region: Little Kinyasungwe River Catchment, central semi-arid Tanzania. Study focus: The structure and hydraulic properties of superficial geology can play a crucial role in controlling groundwater recharge in drylands. However, the pathways by which groundwater recharge occurs and their sensitivity to environmental change remain poorly resolved. Geophysical surveys using Electrical Resistivity Tomography (ERT) were conducted in the study region and used to delineate shallow subsurface stratigraphy in conjunction with borehole logs. Based on these results, a series of local-scale conceptual hydrogeological models was produced and collated to generate a 3D conceptual model of groundwater recharge to the wellfield. New hydrological insights for the region: We propose that configurations of superficial geology control groundwater recharge in dryland settings as follows: 1) superficial sand deposits act as collectors and stores that slowly feed recharge into zones of active faulting; 2) these fault zones provide permeable pathways enabling greater recharge to occur; 3) ‘windows’ within layers of smectitic clay that underlie ephemeral streams may provide pathways for focused recharge via transmission losses; and 4) overbank flooding during high intensity precipitation events increases the probability of activating such permeable pathways. These conceptual models provide a physical basis to improve numerical models of groundwater recharge in drylands, and a conceptual framework to evaluate strategies (e.g., Managed Aquifer Recharge) to artificially enhance the availability of groundwater resources in these regions.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Zarate, E.; School of Earth & Environmental Sciences, Cardiff University, Cardiff, United Kingdom ; British Geological Survey, Lyell Centre, Edinburgh, United Kingdom
Hobley, D.; School of Earth & Environmental Sciences, Cardiff University, Cardiff, United Kingdom
MacDonald, A.M.; British Geological Survey, Lyell Centre, Edinburgh, United Kingdom
Swift, Russell ; Université de Liège - ULiège > Urban and Environmental Engineering ; British Geological Survey, Lyell Centre, Edinburgh, United Kingdom
Chambers, J.; British Geological Survey, Lyell Centre, Edinburgh, United Kingdom
Kashaigili, J.J.; Sokoine University of Agriculture, Morogoro, Tanzania
Mutayoba, E.; Water Institute, Water Resources Department, Dsm, Tanzania
Taylor, R.G.; Department of Geography, University College London, London, United Kingdom
Cuthbert, M.O.; School of Earth & Environmental Sciences, Cardiff University, Cardiff, United Kingdom ; The University of New South Wales (UNSW), School of Civil and Environmental Engineering, Sydney, Australia ; Water Research Institute, Cardiff University, Cardiff, United Kingdom
Language :
English
Title :
The role of superficial geology in controlling groundwater recharge in the weathered crystalline basement of semi-arid Tanzania
Emanuel Zarate is supported by a NERC GW4+ Doctoral Training Partnership studentship from the Natural Environment Research Council [ NE/L002434/1 ] and is thankful for the support and additional funding from CASE partner , the BGS .Further funding is gratefully acknowledged as follows: RGT - GroFutures ( NE008932/1 ) under the NERC-ESRC DFID UPGro programme; JK - GroFutures ( NE008592/1 ) under the NERC-ESRC DFID UPGro programme; MOC - NERC Independent Research Fellowship ( NE/P017819/1 ).
Abel, C., Horion, S., Tagesson, T., De Keersmaecker, W., Seddon, A.W.R., Abdi, A.M., Fensholt, R., The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4:1 (2020), 25–32, 10.1038/s41893-020-00597-z.
Acworth, R.I., Timms, W.A., Hydrogeological investigation of mud-mound springs developed over a weathered basalt aquifer on the Liverpool Plains, New South Wales, Australia. Hydrogeol. J. 11 (2003), 659–672.
Acworth, R.I., Rau, G.C., Cuthbert, M.O., Jensen, E., Leggett, K., Long-term spatio-temporal precipitation variability in arid-zone Australia and implications for groundwater recharge. Hydrogeol. J. 24 (2016), 905–921, 10.1007/s10040-015-1358-7.
Acworth, R.I., Rau, G.C., Cuthbert, M.O., Leggett, K., Andersen, M.S., Runoff and focused groundwater-recharge response to flooding rains in the arid zone of Australia. Hydrogeol. J., 2020, 1–28.
Aizebeokhai, A.P., Singh, V.S., Field evaluation of 3D geo-electrical resistivity imaging for environmental and engineering studies using parallel 2D profiles. Curr. Sci., 2013, 504–512.
Andersen, M.S., Acworth, R.I., Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol. J. 17 (2009), 2005–2021, 10.1007/s10040-009-0500-9.
Anudu, G.K., Essien, B.I., Obrike, S.E., Hydrogeophysical investigation and estimation of groundwater potentials of the Lower Palaeozoic to Precambrian crystalline basement rocks in Keffi area, north-central Nigeria, using resistivity methods. Arab. J. Geosci. 7 (2014), 311–322.
Banks, E.W., Cook, P.G., Owor, M., Okullo, J., Kebede, S., Nedaw, D., Mleta, P., Fallas, H., Gooddy, D., MacAllister, D.J., et al. Environmental tracers to evaluate groundwater residence times and water quality risk in shallow unconfined aquifers in sub Saharan Africa. J. Hydrol., 2020, 125753.
Barongo, J.O., Palacky, G.J., Investigations of electrical properties of weathered layers in the Yala area, western Kenya, using resistivity soundings. Geophysics 56 (1991), 133–138.
Beauvais, A., Ritz, M., Parisot, J.-C., Dukhan, M., Bantsimba, C., Analysis of poorly stratified lateritic terrains overlying a granitic bedrock in West Africa, using 2-D electrical resistivity tomography. Earth Planet. Sci. Lett. 173 (1999), 413–424.
Belle, P., Lachassagne, P., Mathieu, F., Barbet, C., Brisset, N., Gourry, J.-C., Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography: implications for water well siting. Geol. Soc. Lond. Spec. Publ. 479 (2019), 187–205.
Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J.J., Gross, N., Saiz, H., Maire, V., Lehman, A., Rillig, M.C., Solé, R.V., Maestre, F.T., Global ecosystem thresholds driven by aridity. Science (80-.) 367 (2020), 787–790, 10.1126/science.aay5958.
Bianchi, M., MacDonald, A.M., Macdonald, D.M.J., Asare, E.B., Investigating the productivity and sustainability of weathered basement aquifers in tropical Africa using numerical simulation and global sensitivity analysis. Water Resour. Res., 56, 2020 e2020WR027746.
Bianconi, F., Borshoff, J., Surficial Uranium Occurrences in the United Republic of Tanzania. 1984.
Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., Slater, L.D., The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 51 (2015), 3837–3866, 10.1002/2015WR017016.
Braune, E., Xu, Y., The role of ground water in sub-Saharan Africa. Ground Water 48 (2010), 229–238, 10.1111/j.1745-6584.2009.00557.x.
Bredehoeft, J.D., The water budget myth revisited: why hydrogeologists model. Ground Water 40 (2002), 340–345, 10.1111/j.1745-6584.2002.tb02511.x.
Brunet, P., Clément, R., Bouvier, C., Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT) – a case study in the Cevennes area. France. J. Hydrol. 380 (2010), 146–153, 10.1016/J.JHYDROL.2009.10.032.
Callegary, J.B., Leenhouts, J.M., Paretti, N.V., Jones, C.A., Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics. J. Hydrol. 344 (2007), 17–31, 10.1016/j.jhydrol.2007.06.028.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R.R., Myneni, R.B., China and India lead in greening of the world through land-use management. Nat. Sustain. 2 (2019), 122–129, 10.1038/s41893-019-0220-7.
Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., von Maltitz, G., World Atlas of Desertification. World Atlas Desertif. 2018.
Clifford, J., Binley, A., Geophysical characterization of riverbed hydrostratigraphy using electrical resistance tomography. Near Surf. Geophys. 8 (2010), 493–501.
Costa, A.C., Bronstert, A., de Araújo, J.C., A channel transmission losses model for different dryland rivers. Hydrol. Earth Syst. Sci. Discuss. 16 (2012), 1111–1135, 10.5194/hess-16-1111-2012.
Crane, R.A., Cuthbert, M.O., Timms, W., The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media. Hydrol. Earth Syst. Sci. Discuss. 19 (2015), 3991–4000.
Cuthbert, M.O., Mackay, R., Tellam, J.H., Barker, R.D., The use of electrical resistivity tomography in deriving local-scale models of recharge through superficial deposits. Q. J. Eng. Geol. Hydrogeol. 42 (2009), 199–209, 10.1144/1470-9236/08-023.
Cuthbert, M.O., Acworth, R.I., Andersen, M.S., Larsen, J.R., McCallum, A.M., Rau, G.C., Tellam, J.H., Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations. Water Resour. Res. 52 (2016), 827–840, 10.1002/2015WR017503.
Cuthbert, M.O., Gleeson, T., Moosdorf, N., Befus, K.M., Schneider, A., Hartmann, J., Lehner, B., Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9 (2019), 137–141, 10.1038/s41558-018-0386-4.
Cuthbert, M.O., Taylor, R.G., Favreau, G., Todd, M.C., Shamsudduha, M., Villholth, K.G., MacDonald, A.M., Scanlon, B.R., Kotchoni, D.O.V., Vouillamoz, J.-M., Lawson, F.M.A., Adjomayi, P.A., Kashaigili, J., Seddon, D., Sorensen, J.P.R., Ebrahim, G.Y., Owor, M., Nyenje, P.M., Nazoumou, Y., Goni, I., Ousmane, B.I., Sibanda, T., Ascott, M.J., Macdonald, D.M.J., Agyekum, W., Koussoubé, Y., Wanke, H., Kim, H., Wada, Y., Lo, M.-H., Oki, T., Kukuric, N., Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572 (2019), 230–234, 10.1038/s41586-019-1441-7.
Dahan, O., Tatarsky, B., Enzel, Y., Kulls, C., Seely, M., Benito, G., Dynamics of flood water infiltration and ground water recharge in Hyperarid Desert. Ground Water 46 (2008), 450–461, 10.1111/j.1745-6584.2007.00414.x.
Dahlin, T., Wisén, R., Zhang, D., 3D effects on 2D resistivity imaging–modelling and field surveying results. Near Surface 2007-13th EAGE European Meeting of Environmental and Engineering Geophysics, 2007 p. cp–30.
Dawson, J.B., The Gregory Rift Valley and Neogene-Recent Volcanoes of Northern Tanzania. 2008.
De Pauw, E.F., Magoggo, J.P., Niemeyer, W., Soil Survey Report of Dodoma Capital City District., 1983.
Dennis, P.G., Hirsch, P.R., Smith, S.J., Taylor, R.G., Valsami-Jones, E., Miller, A.J., Linking rhizoplane pH and bacterial density at the microhabitat scale. J. Microbiol. Methods 76 (2009), 101–104.
DESA, U.N., World Population Prospects, the 2017 Revision: Comprehensive Tables, Vol. I, 2017, New York United Nations Dep. Econ. Soc. Aff.
Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J.C., Krishnamurthy, N.S., A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J. Hydrol. 330:1–2 (2006), 260–284, 10.1016/j.jhydrol.2006.03.026.
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R.D.G., Jain, R.C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 27 (2019), 1–30.
DUWASA, Needs, Production and Water Supply. 2017.
Edwards, L.S., A modified pseudosection for resistivity and IP. Geophysics 42 (1977), 1020–1036.
Eilers, V.H.M., Carter, R.C., Rushton, K.R., A single layer soil water balance model for estimating deep drainage (potential recharge): an application to cropped land in semi-arid North-east Nigeria. Geoderma 140 (2007), 119–131, 10.1016/j.geoderma.2007.03.011.
Fawley, A.P., Evaporation Rate at Dodoma, Tanganyika. 1958.
Flinchum, B.A., Banks, E., Hatch, M., Batelaan, O., Peeters, L.J.M., Pasquet, S., Identifying recharge under subtle ephemeral features in a flat-lying semi-arid region using a combined geophysical approach. Hydrol. Earth Syst. Sci. Discuss. 24 (2020), 4353–4368.
Fookes, P.G., Tropical Residual Soils: A Geological Society Engineering Group Working Party Revised Report., 1997.
Gleeson, T., Alley, W.M., Allen, D.M., Sophocleous, M.A., Zhou, Y., Taniguchi, M., VanderSteen, J., Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50 (2012), 19–26, 10.1111/j.1745-6584.2011.00825.x.
Gleeson, T., Cuthbert, M., Ferguson, G., Perrone, D., Global groundwater sustainability, resources, and systems in the anthropocene. Annu. Rev. Earth Planet. Sci. 48 (2020), 431–463, 10.1146/annurev-earth-071719-055251.
Gourdol, L., Clément, R., Juilleret, J., Pfister, L., Hissler, C., Large-scale ERT surveys for investigating shallow regolith properties and architecture. Hydrol. Earth Syst. Sci. Discuss., 2018, 1–39, 10.5194/hess-2018-519.
Gourry, J.-C., Vermeersch, F., Garcin, M., Giot, D., Contribution of geophysics to the study of alluvial deposits: a case study in the Val d'Avaray area of the River Loire, France. J. Appl. Geophys. 54 (2003), 35–49.
Griffiths, K.J., MacDonald, A.M., Robins, N.S., Merritt, J., Booth, S.J., Johnson, D., McConvey, P.J., Improving the characterization of Quaternary deposits for groundwater vulnerability assessments using maps of recharge and attenuation potential. Q. J. Eng. Geol. Hydrogeol. 44 (2011), 49–61.
Hayashi, M., Chiba, H., Identification of groundwater components by CI" and stable isotope signatures: a case study in a semi-arid basin in Tanzania. Jap. Groundw. Hydrol. 36 (1994), 259–275.
Jiménez Cisneros, B.E., Oki, T., Arnell, N.W., Benito, G., Cogley, J.G., Döll, P., Jiang, T., Mwakalila, S.S., Kundzewicz, Z., Nishijima, A., Freshwater resources, in: Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects. 2014, 229–270, 10.1017/CBO9781107415379.008.
Julian, W., Lounsberry, W., Tamura, A., Van Loenen, R., Wright, M.P., Brief explanation of the geology. Quarter Degree Sheet 134, 1963.
Kabete, J.M., Groves, D.I., McNaughton, N.J., Mruma, A.H., A new tectonic and temporal framework for the Tanzanian Shield: implications for gold metallogeny and undiscovered endowment. Ore Geol. Rev. 48 (2012), 88–124.
Kashaigili, J.J., Assessment of Groundwater Availability and Its Current and Potential Use and Impacts in Tanzania. Morogoro, Tanzania. 2010.
Kashaigili, J.J., Mashauri, D.A., Abdo, G., Groundwater management by using mathematical modeling: case of the Makutupora groundwater basin in dodoma Tanzania. Botswana J. Technol., 12, 2003, 10.4314/bjt.v12i1.15342.
Kolusu, S.R., Shamsudduha, M., Todd, M.C., Taylor, R.G., Seddon, D., Kashaigili, J.J., Ebrahim, G.Y., Cuthbert, M.O., Sorensen, J.P.R., Villholth, K.G., et al. The El Niño event of 2015–2016: climate anomalies and their impact on groundwater resources in East and Southern Africa. Hydrol. Earth Syst. Sci. Discuss. 23 (2019), 1751–1762.
LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A., Owen, E., The effects of noise on Occam's inversion of resistivity tomography data. Geophysics 61 (1996), 538–548.
Lange, J., Dynamics of transmission losses in a large arid stream channel. J. Hydrol. 306 (2005), 112–126, 10.1016/j.jhydrol.2004.09.016.
Levick, Lainie R., Goodrich, David C., Hernandez, Mariano, Fonseca, Julia, Semmens, Darius J., Stromberg, Juliet C., Tluczek, Melanie, Leidy, Scianni, Melissa, Guertin, Phillip D., Kepner, William G., The ecological and hydrological significance of ephemeral and intermittent streams in the arid and semi-arid American Southwest. 2008, Environmental Protection Agency, Office of Research and Development.
Loke, M.H., RES1D ver. 1.0. 1-D Resistivity, IP & SIP Inversion and Forward Modeling. Wenner and Schlumberger arrays, User's Manual. 2001.
Loke, M.H., Acworth, I., Dahlin, T., A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 34 (2003), 182–187, 10.1071/EG03182.
Macdonald, A.M., Davies, J., Calow, R.C., African hydrogeology and rural water supply. Applied Groundwater Studies in Africa, 2008, 127–148.
Macheyeki, A.S., Delvaux, D., De Batist, M., Mruma, A., Fault kinematics and tectonic stress in the seismically active Manyara–Dodoma Rift segment in Central Tanzania–implications for the East African Rift. J. Afr. Earth Sci. 51 (2008), 163–188.
Maurice, L., Taylor, R.G., Tindimugaya, C., MacDonald, A.M., Johnson, P., Kaponda, A., Owor, M., Sanga, H., Bonsor, H.C., Darling, W.G., et al. Characteristics of high-intensity groundwater abstractions from weathered crystalline bedrock aquifers in East Africa. Hydrogeol. J. 27 (2019), 459–474.
McCallum, A.M., Andersen, M.S., Rau, G.C., Larsen, J.R., Acworth, R.I., River-aquifer interactions in a semiarid environment investigated using point and reach measurements. Water Resour. Res. 50 (2014), 2815–2829, 10.1002/2012WR012922.
Meixner, T., Manning, A.H., Stonestrom, D.A., Allen, D.M., Ajami, H., Blasch, K.W., Brookfield, A.E., Castro, C.L., Clark, J.F., Gochis, D.J., Flint, A.L., Neff, K.L., Niraula, R., Rodell, M., Scanlon, B.R., Singha, K., Walvoord, M.A., Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534 (2016), 124–138, 10.1016/j.jhydrol.2015.12.027.
Ministry of Water, Eand M., Report on Hydrological Investigation of Makutapora Basin for Dodoma Capital Water Supply. Dodoma., 1976.
Misstear, B.D.R., Brown, L., Daly, D., A methodology for making initial estimates of groundwater recharge from groundwater vulnerability mapping. Hydrogeol. J. 17 (2009), 275–285.
NASA, METI, AIST, Japan Spacesystems, US/Japan ASTER Science Team, ASTER Global Digital Elevation Model V003. 2019, 10.5067/ASTER/ASTGTM.003.
Nkotagu, H., Origins of high nitrate in groundwater in Tanzania. J. Afr. Earth Sci. 22 (1996), 471–478, 10.1016/0899-5362(96)00021-8.
Oakes, H., Thorp, J., Dark-clay soils of warm regions variously called rendzina, black cotton soils, regur, and tirs 1. Soil Sci. Soc. Am. J. 15 (1951), 347–354.
Onodera, S., Kitaoka, K., Shindo, S., Stable isotopic compositions of deep groundwater caused by partial infiltration into the restricted recharge area of a semiarid basin in tanzania. Model. Assess. Monit. Groundw. Qual., 1995, 75–83.
Pal, D.K., Deshpande, S.B., Venugopal, K.R., Kalbande, A.R., Formation of di-and trioctahedral smectite as evidence for paleoclimatic changes in southern and central Peninsular India. Geoderma 45 (1989), 175–184.
Parsekian, A.D., Singha, K., Minsley, B.J., Holbrook, W.S., Slater, L., Multiscale geophysical imaging of the critical zone. Rev. Geophys. 53 (2015), 1–26, 10.1002/2014RG000465.
Prăvălie, R., Drylands extent and environmental issues. A global approach. Earth-Science Rev. 161 (2016), 259–278, 10.1016/j.earscirev.2016.08.003.
Rau, G.C., Halloran, L.J.S., Cuthbert, M.O., Andersen, M.S., Acworth, R.I., Tellam, J.H., Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures. Adv. Water Resour. 107 (2017), 354–369, 10.1016/j.advwatres.2017.07.005.
Ritz, M., Parisot, J.-C., Diouf, S., Beauvais, A., Dione, F., Niang, M., Electrical imaging of lateritic weathering mantles over granitic and metamorphic basement of eastern Senegal, West Africa. J. Appl. Geophys. 41 (1999), 335–344.
Robineau, B., Join, J.-L., Beauvais, A., Parisot, J.-C., Savin, C., Geoelectrical imaging of a thick regolith developed on ultramafic rocks: groundwater influence. Austrian J. Earth Sci. 54 (2007), 773–781.
Rulli, M.C., Saviori, A., D'Odorico, P., Global land and water grabbing. Proc. Natl. Acad. Sci. 110:3 (2013), 892–897, 10.1073/pnas.1213163110.
Rwebugisa, R.A., Groundwater Re-Charge Assessment in the Makutupora Basin, Dodoma, Tanzania. Msc Thesis. 2008, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.
Sabater, Sergi, Tockner, Klement, Effects of hydrologic alterations on the ecological quality of river ecosystems. Water scarcity in the Mediterranean, 2009, Springer, 15–39.
Scanlon, B.R., Healy, R.W., Cook, P.G., Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 10 (2002), 18–39, 10.1007/s10040-001-0176-2.
Scanlon, B.R., Keese, K.E., Flint, A.L., Flint, L.E., Gaye, C.B., Edmunds, W.M., Simmers, I., Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 20 (2006), 3335–3370, 10.1002/hyp.6335.
Seddon, D., The Climate Controls and Process of Groundwater Recharge in a Semi-Arid Tropical Environment: Evidence From the Makutapora Basin, Tanzania. 2019, UCL (University College London).
Seddon, D., Kashaigili, J.J., Taylor, R.G., Cuthbert, M.O., Mihale, L., Mwimbo, C., MacDonald, A.M., Groundwater recharge in a dryland environment: evidence from the Makutapora Basin of Tanzania. J. Hydrol. Reg. Stud., 2021 In this issue.
Senguji, F.H., Importance of isotope hydrology techniques in water resources management: a case study of the Makutupora basin in Tanzania. Proc. Int. Symp. Isot. Tech. Water Resour. Dev. Manag., 1999.
Shanafield, M., Cook, P.G., Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: a review of applied methods. J. Hydrol. 511 (2014), 518–529, 10.1016/j.jhydrol.2014.01.068.
Shanafield, M., Gutiérrrez-Jurado, K., White, N., Hatch, M., Keane, R., Catchment-scale characterization of intermittent stream infiltration; a geophysics approach. J. Geophys. Res. Earth Surf., 125, 2020 e2019JF005330.
Shindo, S., Study on the Recharge Mechanism and Development of Groundwater in the Inland Area of Tanzania: Interim Report of Japan-Tanzania Joint Research. 92p. Unpubl. Rep., 1989.
Shindo, S., Members of Japan-Tanzania Joint Research Project (1990) and (1994) study on the recharge mechanism and development of groundwater in the inland area of Tanzania. Prog. Rep. Japan-Tanzania Jt. Res., 1990.
Simmers, I., Understanding Water in a Dry Environment: Hydrological Processes in Arid and Semi-arid Zones, International Contributions to Hydrogeology: IAH International Association of Hydrogeologists. Underst. Water a Dry Environ. Hydrol. Process. Arid Semi-Arid Zo. 2003.
Singha, K., Geophysics is not a silver bullet, but worth a shot. Groundwater, 55, 2017, 149, 10.1111/gwat.12495.
Stoops, G., Marcelino, V., Mees, F., Interpretation of Micromorphological Features of Soils and Regoliths. 2018, Elsevier.
Sutfin, N.A., Shaw, J., Wohl, E.E., Cooper, D., A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA. Geomorphology 221 (2014), 164–175, 10.1016/j.geomorph.2014.06.005.
Taboada, T., Garcia, C., Smectite formation produced by weathering in a coarse granite saprolite in Galicia (NW Spain). Catena 35 (1999), 281–290.
Taylor, R., Hydrology: when wells run dry. Nature 516 (2014), 179–180, 10.1038/516179a.
Taylor, G., Eggleton, R.A., No Title. Regolith Geol. Geomorphol. 2001.
Taylor, R.G., Howard, K.W.F., Lithological evidence for the evolution of weathered mantles in Uganda by tectonically controlled cycles of deep weathering and stripping. Catena 35 (1999), 65–94.
Taylor, R., Tindimugaya, C., The impacts of climate change and rapid development on weathered crystalline rock aquifer systems in the humid tropics of sub- Saharan Africa: evidence from south- western Uganda. Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations, 2011, CRC Press.
Taylor, R.G., Koussis, A.D., Tindimuguya, C., Groundwater and climate in Africa – a review. Hydrol. Sci. J. 54 (2009), 655–664, 10.1623/hysj.54.4.655.
Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J., Taniguchi, M., Bierkens, M.F.P., MacDonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M., Shamsudduha, M., Hiscock, K., Yeh, P.J.-F., Holman, I., Treidel, H., Ground water and climate change. Nat. Clim. Change 3 (2013), 322–329, 10.1038/nclimate1744.
Taylor, R.G., Todd, M.C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., MacDonald, A.M., Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Clim. Change 3 (2013), 374–378, 10.1038/nclimate1731.
Telvari, A., Cordery, I., Pilgrim, D., Relations between transmission losses and bed alluvium in an Australian arid zone stream. Hydrol. Change Environ. 2 (1998), 361–366.
Theis, C.V., The source of water derived from wells: essential factors controlling the response of an aquifer to development. Bridge Eng. 10 (1940), 277–280.
Timms, W.A., Acworth, R.I., Crane, R.A., Arns, C.H., Arns, J.-Y., McGeeney, D.E., Rau, G.C., Cuthbert, M.O., The influence of syndepositional macropores on the hydraulic integrity of thick alluvial clay aquitards. Water Resour. Res. 54 (2018), 3122–3138.
Timms, W., Whelan, M., Acworth, I., McGeeney, D., Bouzalakos, S., Crane, R., McCartney, J., Hartland, A., A novel centrifuge permeameter to characterize flow through low permeability strata. ICPMG2014-Physical Modelling in Geotechnics: Proceedings of the 8th International Conference on Physical Modelling in Geotechnics 2014 (ICPMG2014), Perth, Australia, 14-17 January 2014, 2019 p. 193.
Turner, R.J., Mansour, M.M., Dearden, R., Dochartaigh, B.É.Ó., Hughes, A.G., Improved understanding of groundwater flow in complex superficial deposits using three-dimensional geological-framework and groundwater models: an example from Glasgow, Scotland (UK). Hydrogeol. J. 23 (2015), 493–506.
UN, United Nations 2010-2020 Decade for Deserts and the Fight Against Desertification. 2017.
Villeneuve, S., Cook, P.G., Shanafield, M., Wood, C., White, N., Groundwater recharge via infiltration through an ephemeral riverbed, central Australia. J. Arid Environ. 117 (2015), 47–58, 10.1016/j.jaridenv.2015.02.009.
Vogel, J.C., Van Urk, H., Isotopic composition of groundwater in semi-arid regions of southern Africa. J. Hydrol. 25 (1975), 23–36, 10.1016/0022-1694(75)90036-0.
Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., Bierkens, M.F.P., Global depletion of groundwater resources. Geophys. Res. Lett., 37, 2010, 10.1029/2010GL044571 n/a-n/a.
Wada, Y., van Beek, L.P.H., Wanders, N., Bierkens, M.F.P., Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett., 8, 2013, 034036, 10.1088/1748-9326/8/3/034036.
Wade, F.B., Oates, F., An Explanation of Degree Sheet No. 52 (Dodoma). Short Pap. 17, 52_60. 1938.
Wang, P., Pozdniakov, S.P., Vasilevskiy, P.Y., Estimating groundwater-ephemeral stream exchange in hyper-arid environments: field experiments and numerical simulations. J. Hydrol. 555 (2017), 68–79, 10.1016/j.jhydrol.2017.10.004.
Wheater, H., Sorooshian, S., Sharma, K.D., Kapil, D., Hydrological Modelling in Arid and Semi-Arid Areas. 2008, Cambridge University Press.
Wheater, H., Mathias, S., Li, X., Groundwater modelling in arid and semi-arid areas. Groundwater Modelling in Arid and Semi-Arid Areas, 2010, 10.1017/CBO9780511760280.
WMO, World Weather Information Service [WWW Document]. URL, 2020 http://worldweather.wmo.int/en/city.html?cityId=667.
Wright, E.P., Burgess, W.G., The Hydrogeology of Crystalline Basement Aquifers in Africa. Hydrogeol. Cryst. Basement Aquifers Africa. 1992.