[en] For pollinators such as bees, nectar mainly provides carbohydrates and pollen provides proteins, amino acids, and lipids to cover their nutritional needs. Here, to examine differences in pollinator resources, we compared the amino acid profiles and total amino acid contents of pollen from 32 common entomophilous plants in seven families. Our results showed that the amino acid profiles and contents in pollen samples differed according to the plant family and the chromatography method used, i.e., high-performance liquid chromatography (HPLC) versus ion exchange chromatography (IEX). Pollen from Boraginaceae species had the highest total amino acid contents (361.2-504 μg/mg) whereas pollen from the Malvaceae family had the lowest total amino acid contents (136-243.1 μg/mg). Calculating an amino acid score (AAS) that reflects pollen nutritional quality showed that slightly less than half of the species (19 out of 32) had the maximum nutritional score (AAS = 1) and offered high nutritional quality pollen amino acids for bee pollinators. Though they had high total amino acid contents, the amino acid composition of the studied Boraginaceae species and several members of the Fabaceae was not optimal, as their pollen was deficient in some essential amino acids, resulting in suboptimal amino acid scores (AAS < 0.7). Except for cysteine, the measured amino acid contents were higher using IEX chromatography than using HPLC. IEX chromatography is more robust and is to be preferred over HPLC in future amino acid analyses. Moreover, our observations show that some bee-pollinated species fail to provide complete amino acid resources for their pollinators. Although the implications for pollinator behavior remain to be studied, these deficiencies may force pollinators to forage from different species to obtain all nutritionial requirements.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Jeannerod, Léna ; Earth and Life Institute-Agronomy, UCLouvain, Louvain-la-Neuve, Belgium
Carlier, Archibald; Earth and Life Institute-Agronomy, UCLouvain, Louvain-la-Neuve, Belgium
Schatz, Bertrand; CEFE, CNRS, Université de Montpellier, EPHE, IRD, Montpellier, France
Daise, Clothilde; Earth and Life Institute-Agronomy, UCLouvain, Louvain-la-Neuve, Belgium
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Smart Technologies for Food and Biobased Products (SMARTECH)
Agnan, Yannick ; Earth and Life Institute-Agronomy, UCLouvain, Louvain-la-Neuve, Belgium
Baude, Mathilde; Université d' Orléans, USC INRAE 1328, Laboratoire de biologie des ligneux et des grands cultures (LBLGC), Orléans, France ; Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, Institut d'Ecologie et des Sciences de l'Environnement (iEES-Paris), Paris, France
Jacquemart, Anne-Laure; Earth and Life Institute-Agronomy, UCLouvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
Some bee-pollinated plants provide nutritionally incomplete pollen amino acid resources to their pollinators.
UC Louvain F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
We warmly thank all the volunteers who participated in the pollen collection protocol. All our thanks to Hélène Dailly (MOCA platform, ELI, UClouvain) and Christel Buyens (PEPA lab) for their technical help in pollen chemical analyses, to Laura Moquet, Muriel Quinet and Laurent Somme for sharing their data, to Kathleen Farquharson, Jennifer Mach and Nancy Hofmann for language editing (Plant Editors) and to the anonymous reviewers for their constructive comments. This work was supported by the Fonds Spéciaux de Recherche, UCLouvain (FSR). UCLouvain FSR
Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011 Feb 21; 120:321–6.
Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc Royal Soc B. 2007 Feb 7; 274(1608):303–13. https://doi.org/10.1098/rspb.2006.3721 PMID: 17164193
IPBES. The assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. Bonn (Germany): Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; 2016. 552 p.
Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarlı D, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019 Oct; 574(7780):671–4. https://doi.org/10.1038/s41586-019-1684-3 PMID: 31666721
Van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science. 2020 Apr 24; 368 (6489):417–20. https://doi.org/10.1126/science.aax9931 PMID: 32327596
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science. 2006 Jul 21; 313 (5785):351–4. https://doi.org/10.1126/science.1127863 PMID: 16857940
Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcock BA, et al. Widespread losses of pollinating insects in Britain. Nat Commun. 2019 Mar 26; 10:1018. https://doi.org/10.1038/s41467-019-08974-9 PMID: 30914632
Vanbergen AJ. Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ. 2013; 11 (5):251–9.
Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 2015 Mar 27; 347(6229):1255957. https://doi.org/10.1126/science.1255957 PMID: 25721506
Requier F, Odoux J-F, Henry M, Bretagnolle V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J Appl Ecol. 2017; 54(4):1161–70.
Timberlake TP, Vaughan IP, Memmott J. Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. J Appl Ecol. 2019; 56(7):1585–96.
Langlois A, Jacquemart A-L, Piqueray J. Contribution of extensive farming practices to the supply of floral resources for pollinators. Insects. 2020 Nov; 11(11):818.
Michener CD. The Bees of the World. 2nd edition. Baltimore: Johns Hopkins University Press; 2007. 992 p.
Roger N, Moerman R, Carvalheiro LG, Aguirre-Guitiérrez J, Jacquemart A-L, Kleijn D, et al. Impact of pollen resources drift on common bumblebees in NW Europe. Glob Chang Biol. 2017 Jan 1; 23(1):68–76. https://doi.org/10.1111/gcb.13373 PMID: 27234488
Policarová J, Cardinal S, Martins AC, Straka J. The role of floral oils in the evolution of apid bees (Hymenoptera: Apidae). Biol J Linn Soc. 2019 Sep 17; 128(2):486–97.
Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature. 2016 Feb; 530:85–8. https://doi.org/10.1038/nature16532 PMID: 26842058
Vaudo AD, Tooker JF, Patch HM, Biddinger DJ, Coccia M, Crone MK, et al. Pollen protein: lipid macro-nutrient ratios may guide broad patterns of bee species floral preferences. Insects. 2020 Feb 18; 11(2): E132. https://doi.org/10.3390/insects11020132 PMID: 32085627
Vanderplanck M, Zerck P-L, Lognay G, Michez D. Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies? Apidologie. 2020; 51(5):826–43.
Roulston TH, Cane JH, Buchmann SL. What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr. 2000; 70(4):617–43.
Vanderplanck M, Leroy B, Wathelet B, Wattiez R, Michez D. Standardized protocol to evaluate pollen polypeptides as bee food source. Apidologie. 2014; 45(2):192–204.
Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, et al. How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One. 2014 Jan 21; 9(1): e86209. https://doi.org/10.1371/journal.pone.0086209 PMID: 24465963
Moerman R, Vanderplanck M, Roger N, Declèves S, Wathelet B, Rasmont P, et al. Growth rate of bumblebee larvae is related to pollen amino acids. J Econ Entomol. 2016 Feb; 109(1):25–30. https://doi.org/10.1093/jee/tov279 PMID: 26385047
Moerman R, Vanderplanck M, Fournier D, Jacquemart A-L, Michez D. Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect Conserv Divers. 2017; 10(2):171–9.
Barraud A, Vanderplanck M, Nadarajah S, Michez D. The impact of pollen quality on the sensitivity of bumblebees to pesticides. Acta Oecol. 2020 May 1; 105:103552.
De Groot AP. Amino acid requirements for growth of the honeybee (Apis mellifica L.). Experientia. 1952 May 15; 8(5):192–4. https://doi.org/10.1007/BF02173740 PMID: 14945458
Mariotti F. 35—Plant Protein, Animal Protein, and Protein Quality. in: Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press; 2017. pp. 621–642.
Hanley ME, Franco M, Pichon S, Darvill B, Goulson D. Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct Ecol. 2008; 22(4):592–8.
Ruedenauer FA, Spaethe J, van der Kooi CJ, Leonhardt SD. Pollinator or pedigree: which factors determine the evolution of pollen nutrients? Oecologia. 2019 Oct; 191(2):349–58. https://doi.org/10.1007/ s00442-019-04494-x PMID: 31463783
Simcock N, MacGregor S, Catney P, Dobson A, Ormerod M, Robinson Z, et al. Factors influencing perceptions of domestic energy information: Content, source and process. Energy Policy. 2014 Feb 1; 65:455–464.
Carlier A. Chemical analyses of the pollen protein resources in entomophilous flowers. M.Sc. Thesis, Faculté des bioingénieurs, Université catholique de Louvain; 2020. Available from: http://hdl.handle.net/2078.1/thesis:25359
Labarca C, Loewus F. The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum: II. Production and utilization of exudate from stigma and stylar canal. Plant Physiol. 1973 Aug; 52(2):87–92. https://doi.org/10.1104/pp.52.2.87 PMID: 16658527
Zu P, Koch H, Schwery O, Pironon S, Phillips C, Ondo I, et al. Pollen sterols are associated with phylogeny and environment but not with pollinator guilds. New Phytol. 2021; 230(3):1169–84. https://doi.org/10.1111/nph.17227 PMID: 33484583
Hicks DM, Ouvrard P, Baldock KCR, Baude M, Goddard MA, Kunin WE, et al. Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows. PLoS One. 2016 Jun 24; 11(6): e0158117. https://doi.org/10.1371/journal.pone.0158117 PMID: 27341588
Nichols RN, Goulson D, Holland JM. The best wildflowers for wild bees. J Insect Conserv. 2019 Dec 1; 23(5):819–30.
Vanderplanck M, Gilles H, Nonclercq D, Duez P, Gerbaux P. Asteraceae paradox: chemical and mechanical protection of taraxacum pollen. Insects. 2020 May 14; 11:304. https://doi.org/10.3390/ insects11050304 PMID: 32422920
Weiner CN, Hilpert A, Werner M, Linsenmair KE, Blüthgen N. Pollen amino acids and flower specialisation in solitary bees. Apidologie. 2010; 41(4).
Somme L, Moquet L, Quinet M, Vanderplanck M, Michez D, Lognay G, et al. Food in a row: urban trees offer valuable floral resources to pollinating insects. Urban Ecosyst. 2016 Sep; 19(3):1149–61.
Stabler D, Power EF, Borland AM, Barnes JD, Wright GA. A method for analysing small samples of floral pollen for free and protein-bound amino acids. Methods Ecol Evol. 2018 Feb; 9(2):430–8. https://doi.org/10.1111/2041-210X.12867 PMID: 29576862
Rayner C, Kerr M, Corporation PR and D, Laboratory (Victoria) SC. Amino acid proficiency testing for pig research laboratories. Victoria. Department of Natural Resources and Environment; 1996.
Roulston TH, Cane JH. Pollen nutritional content and digestibility for animals. Pl Syst Evol. 2000 Mar 1; 222(1):187–209.
Jacquemart A-L, Descamps C. Flore écologique de Belgique. 2nd ed. Namur (Belgium): Editions Averbode|Erasme; 2019.
Standifer LN, McCaughey WF, Dixon SE, Gilliam M, Loper GM. Biochemistry and microbiology of pollen collected by honeybees (Apis mellifera L.) from almond, Prunus dulcis. II. Protein, amino acids and enzymes. Apidologie. 1980
Meussen BJ, Zeeland ANT van, Bruins ME, Sanders JPM. A Fast and Accurate UPLC Method for Analysis of Proteinogenic Amino Acids. Food Anal Methods. 2014; 7(5):1047–55.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan community ecology package version 2.5–7 November 2020. 2020.
Goodwin R, Cox H, Taylor M, Evans L, McBrydie H. Number of honey bee visits required to fully pollinate white clover (Trifolium repens) seed crops in Canterbury, New Zealand. N Z J Crop Hortic Sci. 2011 Mar 1; 39(1):7–19.
Ouvrard P, Transon J, Jacquemart A-L. Flower-strip agri-environment schemes provide diverse and valuable summer flower resources for pollinating insects. Biodivers Conserv. 2018; 27:24.
Jacquemart A-L, Moquet L, Ouvrard P, Quetin-Leclercq J, Hérent M-F, Quinet M. Tilia trees: toxic or valuable resources for pollinators? Apidologie. 2018 Oct; 49(5):538–50.
Hrassnigg N, Leonhard B, Crailsheim K. Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids. 2003 Mar 1; 24(1):205–12.
Bertazzini M, Medrzycki P, Bortolotti L, Maistrello L, Forlani G. Amino acid content and nectar choice by forager honeybees (Apis mellifera L.). Amino Acids. 2010 Jun; 39(1):315–8. https://doi.org/10.1007/ s00726-010-0474-x PMID: 20091414
Teulier L, Weber J-M, Crevier J, Darveau C-A. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proc Biol Sci. 2016; 283(1834):1–8. https://doi.org/10.1098/rspb.2016. 0333 PMID: 27412285
Chapman RF, Simpson SJ, Douglas AE. The Insects: Structure and Function. 5e édition. New York: Cambridge University Press; 2012.
Taha E-KA, Al-Kahtani S, Taha R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J Biol Sci. 2019 Feb; 26(2):232–7. https://doi.org/10.1016/j.sjbs.2017.06.003 PMID: 31485159
Cook SM, Awmack CS, Murray DA, Williams IH. Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol Entomol. 2003; 28(5):622–7.
Gardner MLG. Cysteine: A potential source of error in amino acid analysis of mercaptoethane sulfonic or hydrochloric acid hydrolysates of proteins and peptides. Anal Biochem. 1984 Sep 1; 141(2):429–31. https://doi.org/10.1016/0003-2697(84)90066-6 PMID: 6437274
Kaspar H, Dettmer K, Chan Q, Daniels S, Nimkar S, Daviglus ML, et al. Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer. J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Jul 1; 877(20–21):1838–46. https://doi.org/10.1016/j.jchromb.2009.05.019 PMID: 19481989
Moquet L, Vanderplanck M, Moerman R, Quinet M, Roger N, Michez D, et al. Bumblebees depend on ericaceous species to survive in temperate heathlands. Schonrogge K, Brady S, editors. Insect Conserv Divers. 2017 Jan; 10(1):78–93.
Quinet M, Warzée M, Vanderplanck M, Michez D, Lognay G, Jacquemart A-L. Do floral resources influence pollination rates and subsequent fruit set in pear (Pyrus communis L.) and apple (Malus x domestica Borkh) cultivars? Eur J Agron. 2016 Jul; 77:59–69.