Hydrogenolysis; Lignin Miscanthus; Methanol; Monomers; Synergistic effect; Acid catalyst; Condition; Heterogeneous catalyst; Lignin depolymerization; Lignin miscanthus; Miscanthus; Monomer units; Nb doped; One pot; Renewable Energy, Sustainability and the Environment
Abstract :
[en] One-pot depolymerisation of lignin, extracted from Miscanthus plants under acidic (formic acid lignin, FAL) or basic (ammonia lignin, AL) conditions, over Ni- and/or Nb-doped SBA-15, was the subject of this study. The aforementioned acid catalysts prepared by sol–gel method were characterized by SEM–EDX, ATR-FTIR, Raman, XRD, N2 adsorption/desorption isotherms, CO2-TPD and NH3-TPD techniques. The increase in acidity due to the insertion of Nb into the SBA-15 structure promoted the selective cleavage of β–O–4 from ammonia lignin, leading to aromatic monomer yields up to 22 wt% in 6 h at 180 °C under 50 atm H2. The catalytic performances of Ni-Nb-SBA-15 as well as its stability were influenced by the chemical composition of the lignin sample as results of its extraction from the Miscanthus plant.
Disciplines :
Chemistry
Author, co-author :
Samikannu, Ajaikumar; Technical Chemistry, Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
Mikkola, Jyri-Pekka; Technical Chemistry, Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden ; Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, Finland
Tirsoaga, Alina; Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, Bucharest, Romania
Tofan, Vlad; Cantacuzino National Institute of R&D for Microbiology and Immunology, Bucharest, Romania
Fierascu, Radu Claudiu; National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Bucharest, Romania ; Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Bucharest, Romania
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Smart Technologies for Food and Biobased Products (SMARTECH)
Verziu, Marian Nicolae ; Department of Bioresources and Polymer Science, Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
Language :
English
Title :
The activation of C–O bonds in lignin Miscanthus over acidic heterogeneous catalysts: towards lignin depolymerisation to monomer units
Publication date :
2022
Journal title :
Biomass Conversion and Biorefinery
ISSN :
2190-6815
eISSN :
2190-6823
Publisher :
Springer Science and Business Media Deutschland GmbH
Toledano A, Serrano L, Labidi J (2014) Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 116:617–624 DOI: 10.1016/j.fuel.2013.08.071
Cheng C, Shen D, Gub S, Luo KH (2018) State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catal Sci Technol 8:6275–6296 DOI: 10.1039/C8CY00845K
Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599 DOI: 10.1021/cr900354u
Song QL, Zhao YP, Wu FP, Li GS, Fan X, Wang RY, Cao JP, Wei XY (2020) Selective hydrogenolysis of lignin-derived aryl ethers over Co/C@N catalysts. Renew Energ 148:729–738 DOI: 10.1016/j.renene.2019.10.160
Hu J, Zhang S, Xiao R, Jiang X, Wang Y, Sun Y, Lu P (2019) Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresour Technol 279:228–233 DOI: 10.1016/j.biortech.2019.01.132
Monedero BG, Ruiza MP, Bimbela F, Faria J (2017) Selective hydrogenolysis of α-O-4, β-O-4, 4-O-5 CO bonds of lignin-model compounds and lignin-containing stillage derived from cellulosic bioethanol processing. Appl Catal A Gen 541:60–76 DOI: 10.1016/j.apcata.2017.04.022
Jeon W, Choi IH, Park JY, Lee JS, Hwang KR (2020) Alkaline wet oxidation of lignin over Cu-Mn mixed oxide catalysts for production of vanillin. Catal Today 352:95–103 DOI: 10.1016/j.cattod.2019.12.037
Mahmood N, Yuan Z, Schmidt J, Xu C (2015) Hydrolytic depolymerization of hydrolysis lignin: effects of catalysts and solvents. Bioresour Technol 190:416–419 DOI: 10.1016/j.biortech.2015.04.074
Patwardhan PR, Brown RC, Shanks BH (2011) Understanding the fast pyrolysis of lignin. Chemsuschem 4:1629–1636 DOI: 10.1002/cssc.201100133
Zhang J (2018) Catalytic transfer hydrogenolysis as an efficient route in cleavage of lignin and model compounds. Green Energy Environ 3:328–334 DOI: 10.1016/j.gee.2018.08.001
Chen X, Guan W, Tsang CW, Hu H, Liang C (2019) Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions. Catalysts 9:488–526 DOI: 10.3390/catal9060488
McVeigh A, Bouxin FP, Jarvis MC, Jackson SD (2016) Catalytic depolymerisation of isolated lignin to fine chemicals: part 2 – process optimisation. Catal Sci Technol 6:4142–4150 DOI: 10.1039/C5CY01896J
Gao X, Zhu S, Li Y (2019) Selective hydrogenolysis of lignin and model compounds to monophenols over AuPd/CeO2. Mol Catal 462:69–76 DOI: 10.1016/j.mcat.2018.10.022
Zakzeski J, Weckhuysen BM (2011) Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. Chemsuschem 4:369–378 DOI: 10.1002/cssc.201000299
Qin Y, Wang H, Ruan H, Feng M, Yang B (2018) High catalytic efficiency of lignin depolymerization over low Pd-zeolite Y loading at mild temperature. Front Energy Res 6:1–7 DOI: 10.3389/fenrg.2018.00002
Li H, Song G (2019) Ru-catalyzed hydrogenolysis of lignin: base-dependent tunability of monomeric phenols and mechanistic study. ACS Catal 9:4054–4064 DOI: 10.1021/acscatal.9b00556
Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci 6:994–1007 DOI: 10.1039/c2ee23741e
Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal 4:1574–1583 DOI: 10.1021/cs401199f
Shao Y, Xia Q, Dong L, Liu X, Han X, Parker SF, Cheng Y, Daemen L L, Cuesta A J R, Yang S, Wang Y (2017) Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat. Commun. 8: Article 16104
Dong L, Xin Y, Liu X, Guo Y, Pao CW, Chen JL, Wang Y (2019) Selective hydrodeoxygenation of lignin oil to valuable phenolics over Au/Nb2O5 in water. Green Chem 21:3081–3090 DOI: 10.1039/C9GC00327D
Chen P, Zhang Q, Shu R, Xu Y, Ma L, Wang T (2017) Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresour Technol 226:125–131 DOI: 10.1016/j.biortech.2016.12.030
Thepparat K, Laosiripojana N, Cronin D, Moghaddam L, Zhang Z, Doherty WOS (2015) Effects of mesostructured silica catalysts on the depolymerization of organosolv lignin fractionated from woody eucalyptus. Bioresour Technol 180:222–229 DOI: 10.1016/j.biortech.2014.12.098
Song W, He Y, Lai S, Lai W, Yi X, Yang W, Jiang X (2020) Selective hydrodeoxygenation of lignin phenols to alcohols in aqueous phase over hierarchical Nb2O5-supported Ni catalyst. Green Chem 22:1662–1670 DOI: 10.1039/C9GC03842F
Lavoie JM, Baré W, Bilodeau M (2011) Depolymerization of steam-treated lignin for the production of green chemicals. Bioresource Technol 102:4917–4920 DOI: 10.1016/j.biortech.2011.01.010
Vanderghem C, Richel A, Jacquet N, Blecker C, Paquot M (2011) Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physicochemical properties of Miscanthus x giganteus lignins. Polym Degrad Stab 96:1761–1770 DOI: 10.1016/j.polymdegradstab.2011.07.022
Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036 DOI: 10.1021/ja974025i
Rahmat N, Abdullah AZ, Santra C, Mohamed AR (2010) A review: Mesoporous Santa Barbara amorphous-15, types, synthesis and its applications towards biorefinery production. Amer J Appl Sci 7:1579–1586 DOI: 10.3844/ajassp.2010.1579.1586
Rahman S, Shah S, Santra C, Sen D, Sharma S, Pandey JK, Mazumder S, Chowdhury B (2016) Controllable synthesis of niobium doped mesoporous silica materials with various morphologies and its activity for oxidative catalysis. Microporous Mesoporous Mater 226:169–178 DOI: 10.1016/j.micromeso.2015.12.049
Peng K, Li X, Liu X, Wang Y (2017) Hydrothermally stable Nb-SBA-15 catalysts applied in carbohydrate conversion to 5-hydroxymethylfurfural. Mol Catal 441:72–80 DOI: 10.1016/j.mcat.2017.04.034
Zhang Y, Pan Z, Wang N, Wang L (2021) Performance of carbon-modified Pd/SBA-15 catalyst for 2-ethylanthraquinone hydrogenation. Mol Catal 504:111424–111431 DOI: 10.1016/j.mcat.2021.111424
Ivanova T, Harizanova A, Shipochka M, Vitanov P (2022) Nickel oxide films deposited by sol-gel method: effect of annealing temperature on structural, optical, and electrical properties. Materials 15:1742–1756 DOI: 10.3390/ma15051742
MT Pegado da Silva MT, Barbosa FF, Torre MAM,Rocha JV, Sapag K, Pergher SBC, Braga TP (2020) Synthesis of Fe2SiO4-Fe7Co3 nanocomposite dispersed in the mesoporous SBA-15: Application as magnetically separable adsorbent. Molecules 25:1016–1040
Tesser R, Vitiello R, Carotenuto G, Sancho GC, Vergara A, Torres MPJ, Li C, Di Serio M (2015) Niobia supported on silica as a catalyst for biodiesel production from waste oil. Catal Sustain Energy 2:33–42 DOI: 10.1515/cse-2015-0002
Rojas E, Delgado JJ, Pérezc MOG, Bañares MA (2013) Performance of NiO and Ni–Nb–O active phases during the ethane ammoxidation into acetonitrile. Catal Sci Technol 3:3173–3182 DOI: 10.1039/c3cy00415e
Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, Liang C (2015) Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Ind Eng Chem Res 54:2302–2310 DOI: 10.1021/ie504600f
Reale NR, Cagnol MV (2020) Basicity determination of SBA-15 doped with different alkaline metals through CO2 adsorption and isopropanol decomposition. Euro J Chem 11:100–104 DOI: 10.5155/eurjchem.11.2.100-104.1960
Deepa AK, Dhepe PL (2015) Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal 1:365–379 DOI: 10.1021/cs501371q
Kim JY, Park SY, Choi IG, Choi JW (2018) Evaluation of RuxNi1-x/SBA-15 catalysts for depolymerization features of lignin macromolecule into monomeric phenols. Chem Eng J 336:640–648 DOI: 10.1016/j.cej.2017.11.118
Kong L, Zhang L, Gu J, Gou L, Xie L, Wang Y, Dai L (2020) Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst. Bioresour Technol 299:122582–122590 DOI: 10.1016/j.biortech.2019.122582
Cole DP, Smith EA, Lee YJ (2012) High-resolution mass spectrometric characterization of molecules on biochar from pyrolysis and gasification of switchgrass. Energy Fuels 26:3803–3809 DOI: 10.1021/ef300356u
Jarrell TM, Marcum CL, Sheng H, Owen BC, O’Lenick CJ, Maraun H, Bozell JJ, Kenttamaa HI (2014) Characterization of organosolv switchgrass lignin by using high performance liquid chromatography/high resolution tandem mass spectrometry using hydroxide-doped negative-ion mode electrospray ionization. Green Chem 6:2713–2727 DOI: 10.1039/C3GC42355G
Prothmann J, Spegel P, Sandhal M, Turner C (2018) Identification of lignin oligomers in kraft lignin using ultra-high-performance liquid chromatography/high-resolution multiple-stage tandem mass spectrometry (UHPLC/HRMSn). Anal Bioanal Chem 410:7803–7814 DOI: 10.1007/s00216-018-1400-4
Bergs M, Do XT, Rumpf J, Kusch P, Monakhova Y, Konow C, Volkering G, Pude R, Schulze M (2020) Comparing chemical composition and lignin structure of Miscanthus x giganteus and Miscanthus nagara harvested in autumn and spring and separated into stems and leaves. RCS Advances 10:10740–10751
Kriger O, Budenkova E, Babich O, Suhih S, Patyukov N, Masyutin Y, Dolganuk V, Chupkhin E (2020) The process of producing bioethanol from delignified cellulose isolated from plants of the Miscanthus genus. Bioengineering 7:61–71 DOI: 10.3390/bioengineering7020061
Schafer J, Sattler M, Iqbal Y, Lewandowski I, Bunzel M (2019) Characterization of Miscanthus cell wall polymers. GCB Bioenergy 11:191–205 DOI: 10.1111/gcbb.12538
Lu F, Ralph J (2008) Novel tetrahydrofuran structures derived from b–b-coupling reactions involving sinapyl acetate in kenaf lignins. Org Biomol Chem 6:3681–3694 DOI: 10.1039/b809464k
Sakakibara A (1980) A structural model of softwood lignin. Wood Sci Technol 14:89–100 DOI: 10.1007/BF00584038
Saito SK, Kato T, Takamori H, Kishimoto T, Fkushima K (2005) A new analysis of the depolymerized fragments of lignin polymer using Tof-SIMS. Biomacromol 6:2688–2696 DOI: 10.1021/bm050147o
Li J, Gellerstedt G (2008) Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Ind Crops Prod 27:175–181 DOI: 10.1016/j.indcrop.2007.07.022
Christensen E, Evans RJ, Carpenter D (2017) High-resolution mass spectrometric analysis of biomass pyrolysis. J Anal Appl Pyrol 124:327–334 DOI: 10.1016/j.jaap.2017.01.015
Banoub J, Delmas GH Jr, Joly N, Mackenzie G, Cachet N, Bouchra BM, Delmas M (2015) A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. J Mass Spectrom 50:5–48 DOI: 10.1002/jms.3541
Hempfling R, Schulten HR (1990) Chemical characterization of the organic matter in forest soils by Curie point pyrolysis-GC/MS and pyrolysis-filed ionization mass spectrometry. Org Geochem 15:131–145 DOI: 10.1016/0146-6380(90)90078-E
Dong L, Xia J, Guo Y, Liu X, Wang H, Wang Y (2021) Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. J Catal 394:94–103 DOI: 10.1016/j.jcat.2021.01.001
Flaherty DW, Hibbitts DD, Iglesia E (2014) Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability. J Am Chem Soc 136:9664–9676 DOI: 10.1021/ja5037429
Richel A, Vanderghem C, Simon M, Wathelet B, Paquot M (2012) Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis. Anal Chem Insights 7:79–89 DOI: 10.4137/ACI.S10799
Letourneau DR, Volmer DA (2021) Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: a review. Mass Spec Rev 1–45
Morreel K, Dima O, Kim H, Lu F, Niculaes C, Vanholme R, Dauwe R, Goeminne G, Inze D, Messens E, Ralph J, Boerjan W (2010) Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol 153:1464–1478 DOI: 10.1104/pp.110.156489
Yoshioka K, Watanabe T, Ando D (2011) A comparative study of matrix- and nano-assisted laser desorption/ionisation time-of-flight mass spectrometry of isolated and synthetic lignin. Phytochem Anal 23:248–253 DOI: 10.1002/pca.1350
Bayerbach R, Nguyen VD, Schurr U, Meier D (2006) Characterization of water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS and Py-FIMS. J Anal Appl Pyrol 77:95–101 DOI: 10.1016/j.jaap.2006.02.002
Verziu M, Tirsoaga A, Cojocaru B, Bucur C, Tudora B, Richel A, Aguedo M, Samikannug A, Mikkola JP (2018) Hydrogenolysis of lignin over Ru-based catalysts: the role of the ruthenium in a lignin fragmentation process. Mol Catal 450:65–76 DOI: 10.1016/j.mcat.2018.03.004
Mei C, Hu C, Hu Q, Sun C, Li L, Liang X, Dong Y, Gu X (2020) Effective depolymerization of sodium lignosulfonate over SO42−/TiO2 catalyst. Catalysts 10:995 DOI: 10.3390/catal10090995
Hanmin Y, Tong H, Weihong Y, Linda S, Par GJ (2022) Influence of the porosity and acidic properties of aluminosilicate catalysts on coke formation during the catalytic pyrolysis of lignin. J Anal Appl Pyrolysis 65:105536–105546
Zhai Y, Li C, Xu G, Ma Y, Liu X, Zhang Y (2017) Depolymerization of lignin via a non-precious Ni-Fe alloy catalyst supported on activated carbon. Green Chem 19:1895–1903 DOI: 10.1039/C7GC00149E
Hao L, Ian MK, Yuan J, Hanyu Z, Baoyuan L, Hilkka IK, Mahdi MAO (2016) Total utilization of Miscanthus biomass, lignin and carbohydrates, using earth abundant nickel catalyst. ACS Sustainable Chem Eng 4:2316–2322 DOI: 10.1021/acssuschemeng.5b01776
Ma H, Li H, Zhao W, Li L, Liu S, Long J, Li X (2019) Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate. Green Chem 21:658–668 DOI: 10.1039/C8GC03617A
Mukundan S, Atanda L, Beltramini J (2019) Thermocatalytic cleavage of C-C and C–O bonds in model compounds and kraft lignin by NiMoS2/C nanocatalyst. Sustain Energy Fuels 3:1317–1328 DOI: 10.1039/C8SE00576A
Shuai L, Sitison J, Sadula S, Ding J, Thies MC, Saha B (2018) Selective C-C bond cleavage of methylene-linked lignin models and kraft lignin. ACS Catal 8:6507–6512 DOI: 10.1021/acscatal.8b00200
Lucejko JJ, Tamburini D, Modugno F, Ribechini E, Colombini P (2021) Analytical pyrolysis and mass spectrometry to characterise lignin in archaeological wood. Appl Sci 11:240–275 DOI: 10.3390/app11010240
Nierop KGJ, Bergen PF, Buurman P, van Lagen B (2005) NaOH and Na4P2O7 extractable organic matter in two allophanic volcanic ash soils of the Azores Islands—a pyrolysis GC/MC study. Geodema 127:36–51 DOI: 10.1016/j.geoderma.2004.11.003
Navarrete P, Pizzi A, Pasch H, Delmotte L (2012) Study on lignin-glyoxal reaction by MALDI-TOF and CP-MAS 13C-NMR. J Adhes Sci Technol 26:1069–1082 DOI: 10.1163/016942410X550030
Cao Y, Wang J, Kang M, Zhu Y (2014) Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. J Mol Catal A: Chem 381:46–53 DOI: 10.1016/j.molcata.2013.10.002
Lakhapatri SL, Abraham MA (2013) Sulfur poisoning of Rh–Ni catalysts during steam reforming of sulfur-containing liquid fuels. Catal Sci Technol 3:2755–2760 DOI: 10.1039/c3cy00351e