[en] Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Cote, Julien ; Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, UMR5174 EDB (Laboratoire Evolution & Diversité Biologique), Toulouse Cedex, France
Dahirel, Maxime; Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR6553, Rennes, France ; Department of Biology, Ghent University, Ghent, Belgium
Schtickzelle, Nicolas; Univ. Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
Altermatt, Florian; Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland ; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
Blanchet, Simon ; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France
Chaine, Alexis S; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France ; Institute for Advanced Studies in Toulouse, Toulouse School of Economics, Toulouse, France
De Laender, Frederik ; Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and Environment, University of Namur, Namur, Belgium
De Raedt, Jonathan; Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and Environment, University of Namur, Namur, Belgium ; Laboratory of Environmental Toxicology and Applied Ecology, Ghent University, Ghent, Belgium
Haegeman, Bart; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France
Jacob, Staffan ; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France
Kaltz, Oliver; ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
Laurent, Estelle; Univ. Catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
Little, Chelsea J; Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland ; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland ; School of Environmental Science, Simon Fraser University, Burnaby, British Columbia, Canada
Manzi, Florent; ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France ; Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Masier, Stefano ; Department of Biology, Ghent University, Ghent, Belgium
Pellerin, Felix ; Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, UMR5174 EDB (Laboratoire Evolution & Diversité Biologique), Toulouse Cedex, France
Pennekamp, Frank; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
Therry, Lieven; Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, UMR5174 EDB (Laboratoire Evolution & Diversité Biologique), Toulouse Cedex, France ; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France
Vong, Alexandre; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France
Winandy, Laurane ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, UMR5174 EDB (Laboratoire Evolution & Diversité Biologique), Toulouse Cedex, France ; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France
Bonte, Dries ; Department of Biology, Ghent University, Ghent, Belgium
Fronhofer, Emanuel A; Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland ; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland ; ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
Legrand, Delphine; Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Théorique et Expérimentale (UAR2029), Moulis, France
ANR - Agence Nationale de la Recherche Fondation Fyssen FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen ERC - European Research Council SNF - Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H. et al. (2019) lme4: Linear mixed-effects models using “Eigen” and S4. Available from: https://CRAN.R-project.org/package=lme4 [Accessed 5th March 2019].
Bestion, E., Teyssier, A., Aubret, F., Clobert, J. & Cote, J. (2014) Maternal exposure to predator scents: offspring phenotypic adjustment and dispersal. Proceedings of the Royal Society B: Biological Sciences, 281, 20140701.
Bolnick, D.I., Amarasekare, P., Araújo, M.S., Bürger, R., Levine, J.M., Novak, M. et al. (2011) Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183–192.
Bonte, D. & Dahirel, M. (2017) Dispersal: a central and independent trait in life history. Oikos, 126, 472–479.
Bonte, D., De Roissart, A., Wybouw, N. & Van Leeuwen, T. (2014) Fitness maximization by dispersal: evidence from an invasion experiment. Ecology, 95, 3104–3111.
Bonte, D., Van Dyck, H., Bullock, J.M., Coulon, A., Delgado, M., Gibbs, M. et al. (2012) Costs of dispersal. Biological Reviews, 87, 290–312.
Bowler, D.E. & Benton, T.G. (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biological Reviews, 80, 205–225.
Byers, J.E. (2000) Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. Journal of Experimental Marine Biology and Ecology, 248, 133–150.
Clobert, J., Baguette, M., Benton, T.G. & Bullock, J.M. (2012) Dispersal. Ecology and evolution. New York, NY: Oxford University Press.
Clobert, J., Le Galliard, J.F., Cote, J., Meylan, S. & Massot, M. (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters, 12, 197–209.
Comte, L. & Olden, J.D. (2018) Evidence for dispersal syndromes in freshwater fishes. Proceedings of the Royal Society B, 285, 20172214.
Cote, J., Bestion, E., Jacob, S., Travis, J., Legrand, D. & Baguette, M. (2017) Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography, 40, 56–73.
Cote, J., Brodin, T., Fogarty, S. & Sih, A. (2017) Non-random dispersal mediates invader impacts on the invertebrate community. The Journal of Animal Ecology, 86, 1298–1307.
Cote, J., Fogarty, S., Tymen, B., Sih, A. & Brodin, T. (2013) Personality-dependent dispersal cancelled under predation risk. Proceedings of the Royal Society B: Biological Sciences, 280, 20132349.
Dahirel, M., Dierick, J., De Cock, M. & Bonte, D. (2017) Intraspecific variation shapes community-level behavioral responses to urbanization in spiders. Ecology, 98, 2379–2390.
Forsman, A. & Wennersten, L. (2016) Inter-individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies. Ecography, 39, 630–648.
Fronhofer, E.A., Gut, S. & Altermatt, F. (2017) Evolution of density-dependent movement during experimental range expansions. Journal of Evolutionary Biology, 30, 2165–2176.
Fronhofer, E.A., Legrand, D., Altermatt, F., Ansart, A., Blanchet, S., Bonte, D. et al. (2018) Bottom-up and top-down control of dispersal across major organismal groups. Nature Ecology & Evolution, 1, 1859–1863.
Gilliam, J.F. & Fraser, D.F. (2001) Movement in corridors: enhancement by predation threat, disturbance, and habitat structure. Ecology, 82, 258–273.
Goossens, S., Wybouw, N., Van Leeuwen, T. & Bonte, D. (2020) The physiology of movement. Movement Ecology, 8, 5.
Haegeman, B. & Loreau, M. (2014) General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecology Letters, 17, 175–184.
Hämäläinen, A.M., Guenther, A., Patrick, S.C. & Schuett, W. (2021) Environmental effects on the covariation among pace-of-life traits. Ethology, 127, 32–44.
Hendry, A.P. (2017) Eco-evolutionary dynamics. Princeton, NJ: Princeton University Press.
Higgins, J.P.T. & Thompson, S.G. (2002) Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558.
Jacob, S., Chaine, A.S., Huet, M., Clobert, J. & Legrand, D. (2019) Variability in dispersal syndromes is a key driver of metapopulation dynamics in experimental microcosms. The American Naturalist, 194, 613–626.
Jacob, S., Laurent, E., Morel-Journel, T. & Schtickzelle, N. (2020). Fragmentation and the context-dependence of dispersal syndromes: matrix harshness modifies resident-disperser phenotypic differences in microcosms. Oikos, 129, 158–169.
Kim, K.W. (2000) Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behavioral Ecology and Sociobiology, 48, 182–187.
Laughlin, D.C. & Messier, J. (2015) Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30, 487–496.
Le Galliard, J.F., Remy, A., Ims, R.A. & Lambin, X. (2012) Patterns and processes of dispersal behaviour in arvicoline rodents. Molecular Ecology, 21, 505–523.
Legrand, D., Cote, J., Fronhofer, E.A., Holt, R.D., Ronce, O., Schtickzelle, N. et al. (2017) Eco-evolutionary dynamics in fragmented landscapes. Ecography, 40, 9–25.
Little, C.J., Fronhofer, E.A. & Altermatt, F. (2019) Dispersal syndromes can impact ecosystem functioning in spatially structured freshwater populations. Biology Letters, 15, 20180865.
Massol, F., Altermatt, F., Gounand, I., Gravel, D., Leibold, M.A. & Mouquet, N. (2017) How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. Oikos, 126, 532–546.
Moran, E.V., Hartig, F. & Bell, D.M. (2016) Intraspecific trait variation across scales: implications for understanding global change responses. Global Change Biology, 22, 137–150.
Nakagawa, S. & Schielzeth, H. (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142.
Noonan, M.J., Fleming, C.H., Akre, T.S., Drescher-Lehman, J., Gurarie, E., Harrison, A.-L. et al. (2019) Scale-insensitive estimation of speed and distance traveled from animal tracking data. Movement Ecology, 7, 35.
Peters, R.H. (1986) The ecological implications of body size. Cambridge: Cambridge University Press.
Quévreux, P., Pigeault, R. & Loreau, M. (2021) Predator avoidance and foraging for food shape synchrony and response to perturbations in trophic metacommunities. Journal of Theoretical Biology, 528, 110836.
R Core Team. (2013) R: A language and environment for statistical computing. Available from: http://www.R-project.org/ [Accessed 5th July 2019].
Raffard, A., Bestion, E., Cote, J., Haegeman, B., Schtickzelle, N. & Jacob, S. (2021) Dispersal syndromes can link intraspecific trait variability and meta-ecosystem functioning. Trends in Ecology & Evolution, 37, 322–331.
Raffard, A., Lecerf, A., Cote, J., Buoro, M., Lassus, R. & Cucherousset, J. (2017) The functional syndrome: linking individual trait variability to ecosystem functioning. Proceedings of the Royal Society B, 284, 20171893.
Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. (2019) The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biological Reviews, 94, 648–661.
Ridley, M. (2004) Evolution, 3rd edition. Malden, MA: Blackwell Publishing.
Sih, A., Bell, A.M., Johnson, J.C. & Ziemba, R.E. (2004) Behavioral syndromes: an integrative overview. Quarterly Review of Biology, 79, 241–277.
Stevens, V.M., Trochet, A., Van Dyck, H., Clobert, J. & Baguette, M. (2012) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecology Letters, 15, 74–86.
Stevens, V.M., Whitmee, S., Le Galliard, J.-F., Clobert, J., Böhning-Gaese, K., Bonte, D. et al. (2014) A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecology Letters, 17, 1039–1052.
Travis, J.M.J., Delgado, M., Bocedi, G., Baguette, M., Bartoń, K., Bonte, D. et al. (2013) Dispersal and species' responses to climate change. Oikos, 122, 1532–1540.
Viechtbauer, W. (2010) Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48.