[en] Tropical mountain ecosystems are threatened by land use pressures, compromising their capacity to provide ecosystem services. Although local patterns and interactions among anthropogenic and biophysical factors shape these socio-ecological systems, the analysis of landscape changes and their driving forces is often qualitative and sector oriented. Using the Driver-Pressure-State-Impact-Response (DPSIR) framework, we characterized land use land cover (LULC) dynamics using Markov chain probabilities by elevation and geographic settings and then integrated them with a variety of publicly available geospatial and temporal data into a Generalized Additive Model (GAM) to evaluate factors driving such landscape dynamics in a sensitive region of the northern Ecuadorian Andes. In previous agricultural land located at lower elevations to the east of the studied territory, we found a significant expansion of floriculture (13 times) and urban areas (25 times), reaching together almost 10% of the territory from 1990 to 2014. Our findings also revealed an unexpected trend of páramo stability (0.75-0.90), but also a 40% reduction of montane forests, with the lowest probability (<0.50) of persistence in the elevation band of 2800-3300 m; agricultural land is replacing this LULC classes at higher elevation. These trends highlight the increasing threat of permanently losing the already vulnerable native mountain biodiversity. GAMs of socio-economic factors, demographic, infrastructure variables, and environmental parameters explained between 21 to 42% of the variation of LULC transitions observed in the study region, where topographic factors was the main drivers of change. The conceptual and methodological approach of our findings demonstrate how dynamic patterns through space and time and their explanatory drivers can assist local authorities and decision makers to improve sustainable resource land management in vulnerable landscapes such as the tropical Andes in northern Ecuador.
Research Center/Unit :
Facultad de Ciencias Biológicas - Universdidad Central del Ecuador Biodiversity and Landscape, TERRA, Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Disciplines :
Environmental sciences & ecology Life sciences: Multidisciplinary, general & others
Author, co-author :
Guarderas Valverde, Adriana Paulina ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Doct. sc. agro. & ingé. biol. (Paysage) ; Universidad Central del Ecuador > Facultad de Ciencias Biológicas
Smith, Franz; Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
Dufrêne, Marc ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Language :
English
Title :
Land use and land cover change in a tropical mountain landscape of northern Ecuador: Altitudinal patterns and driving forces.
Linkages between biodiversity and ecosystem services in a land use intensity gradient in the highlands of northern Ecuador
Funders :
UCE - Universidad Central del Ecuador ARES - Académie de Recherche et d'Enseignement Supérieur
Funding number :
DOCT-DI-19-05
Funding text :
This research was funded by the Research Department and the Faculty of Biological Sciences at Universidad Central del Ecuador (Grant N. DOCT-DI-19-05); along with financial support from the Académie de Recherche et d’Enseignement Supérieur (ARES) from Belgium to P.G.
All relevant data are available in the following public repository: DOI 10.5281/zenodo.5911876.
Commentary :
Guarderas, Paulina. (2022). Data set: Land use and land cover change in a tropical mountain landscape of northern Ecuador: altitudinal patterns and driving forces [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5911876
Payne D, Spehn EM, Snethlage M, Fischer M. Opportunities for research on mountain biodiversity under global change. Curr Opin Environ Sustain [Internet]. 2017 Dec; 29:40–7. Available from: https://doi.org/10.1016/j.cosust.2017.11.001
Haines Y, Potschiand M. The links between biodiversity, ecosystem services and human well-being. In: Raffaelli D, Frid C, editors. Ecosystem ecology: A new synthesis. Cambridge University Press; 2010. p. 110–39.
Millennium Ecosystem Assessment (MEA). Synthesis. Ecosystems and Human Well Being. Washington, DC.; 2005.
Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature. 2019; 568(7750):88–92. https://doi.org/10.1038/s41586-019-1048-z PMID: 30918402
Young KR. Andean land use and biodiversity: Humanized landscapes in a time of change. Ann Missouri Bot Gard. 2009; 96(3):492–507.
Aide T, Clark M, Grau H, López-Carr D, Levy M, Redo D, et al. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica. 2013; 45(2):262–71.
Young KR. Ecology of land cover change in glaciated tropical mountains. Rev Peru Biol. 2014; 21 (3):259–70.
Madrigal-Martínez S, Miralles i García JL. Land-change dynamics and ecosystem service trends across the central high-Andean Puna. Sci Rep. 2019; 9(1):1–12.
Gaglio M, Aschonitis VG, Mancuso MM, Puig JPR, Moscoso F, Castaldelli G, et al. Changes in land use and ecosystem services in tropical forest areas: A case study in Andes mountains of Ecuador. Int J Biodivers Sci Ecosyst Serv Manag [Internet]. 2017; 13(1):264–79. Available from: https://doi.org/10.1080/21513732.2017.1345980
Rodríguez Eraso N, Armenteras-Pascual D, Alumbreros JR. Land use and land cover change in the Colombian Andes: Dynamics and future scenarios. J Land Use Sci. 2013; 8(2):154–74.
Di Gregorio A, Jansen L. Land cover classification system: (LCCS): Classification concepts and user manual. Rome: Food and Agriculture Organization of the United Nations; 2005.
Ross C, Fildes S, Millington AC. Land-use and land-cover change in the páramo of South-Central Ecuador, 1979–2014. Land. 2017; 6(3).
Tapia-Armijos MF, Homeier J, Espinosa CI, Leuschner C, De La Cruz M. Deforestation and forest fragmentation in south Ecuador since the 1970s - Losing a hotspot of biodiversity. PLoS One. 2015; 10 (9):1–18.
Lambin EF, Geist HJ, Lepers E. Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour. 2003; 28:205–41.
Nelson GC, Bennett E, Berhe AA, Cassman K, DeFries R, Dietz T, et al. Anthropogenic drivers of ecosystem change: An overview. Ecol Soc. 2006; 11(2).
Farley KA. Grasslands to tree plantations: Forest transition in the Andes of Ecuador. Ann Assoc Am Geogr. 2007; 97(4):755–71.
Grau HR, Aide M. Globalization and Land-Use Transitions in Latin America. Ecol Soc 13(2). 2008; 113 (2):16.
Rocha JM. Agricultural Intensification, Market Participation, and Household Demography in the Peruvian Andes. Hum Ecol. 2011; 39(5):555–68.
Jones KB, Zurlini G, Kienast F, Petrosillo I, Edwards T, Wade TG, et al. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc Ecol. 2013; 28(6):1175–92.
Brandt JS, Townsend PA. Land use—Land cover conversion, regeneration and degradation in the high elevation Bolivian Andes. Landsc Ecol. 2006; 21(4):607–23.
Vanacker V, Molina A, Torres R, Calderon E, Cadilhac L. Challenges for research on global change in mainland Ecuador. Neotrop Biodivers [Internet]. 2018; 4(1):114–8. Available from: https://doi.org/10.1080/23766808.2018.1491706
Hosonuma N, Herold M, De Sy V, De Fries RS, Brockhaus M, Verchot L, et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett. 2012; 7(4).
Organization for Economic Cooperation and Development (OECD). OECD environmental indicators: development, measurement and use. 2003.
Müller F, Burkhard B. The indicator side of ecosystem services. Ecosyst Serv [Internet]. 2012; 1(1):26–30. Available from: https://doi.org/10.1016/j.ecoser.2012.06.001
Santos-Martín F, Martín-López B, García-Llorente M, Aguado M, Benayas J, Montes C. Unraveling the relationships between ecosystems and human wellbeing in Spain. PLoS One [Internet]. 2013; 8(9). Available from: https://doi.org/10.1371/journal.pone.0073249 PMID: 24039894
Balzan M V., Pinheiro AM, Mascarenhas A, Morán-Ordóñez A, Ruiz-Frau A, Carvalho-Santos C, et al. Improving ecosystem assessments in Mediterranean social-ecological systems: A DPSIR analysis. Ecosyst People [Internet]. 2019; 15(1):136–55. Available from: https://doi.org/10.1080/26395916.2019. 1598499
Larrea C, Cuesta F, López A, Greene N, Iturralde P, Maldonado G, et al., editors. Propuesta de indicadores nacionales de biodiversidad y su Plan de Acción 2015–2020. Quito, Ecuador: AE, CONDESAN, GIZ, PNUD-FMAM, USAB.; 2015.
Nassl M, Löffler J. Ecosystem services in coupled social–ecological systems: Closing the cycle of service provision and societal feedback. Ambio. 2015; 44(8):737–49. https://doi.org/10.1007/s13280-015-0651-y PMID: 25964160
Odermatt S. Evaluation of mountain case studies by means of sustainability variables: A DPSIR model as an evaluation tool in the context of the North-South discussion. Mt Res Dev. 2004; 24(4):336–41.
Berrio-Giraldo L, Villegas-Palacio C, Arango-Aramburo S. Understating complex interactions in socio-ecological systems using system dynamics: A case in the tropical Andes. J Environ Manage [Internet]. 2021; 291(May):112675. Available from: https://doi.org/10.1016/j.jenvman.2021.112675 PMID: 33962287
Ostrom E. A general framework for analyzing sustainability of social-ecological systems. Science (80-). 2009; 325(5939):419–22. https://doi.org/10.1126/science.1172133 PMID: 19628857
Ruiz Azurduy S. Manejo adaptativo de riesgos y vulnerabilidad en la zona lacustre de Mojanda. Quito; 2017. 99 p.
Gobierno Autonomo Descentralizado Pedro Moncayo. Plan de Ordenamiento y Desarrollo Cantonal Pedro Moncayo [Internet]. 2015. p. 138. Available from: http://www.pedromoncayo.gob.ec/documentos/ord2015/PDOT.pdf.
De Noni G, Viennot M, Trujillo G. Agricultural erosion in the Ecuadorian Andes. In: Roose E, editor. Land husbandry—Components and strategy: FAO Soils Bulletin 70. Rome: ood and Agriculture Organization of the United Nations (FAO); 1996.
Cáceres-Arteaga N, Ayala-Campaña O, Rosero-Vaca D D., Lane K. ¿Que nos depara el futuro? Análisis climático histórico y proyección de escenarios climáticos futuros para el cantón andino de Pedro Moncayo, Ecuador. Rev Geográfica América Cent. 2018; 3(61E):297–318.
Ministerio del Ambiente (MAE), Ministerio de Agricultura Ganadería y Pesca (MAGAP). Protocolo metodológico para la elaboración del mapa de cobertura y uso de la tierra del Ecuador Continental. 2015.
Ministerio del Ambiente (MAE). Análisis de la deforestación en el Ecuador Continental 1990–2014. [Internet]. Quito—Ecuador; 2016 [cited 2021 Jun 1]. Available from: http://suiadoc.ambiente.gob.ec/documents/10179/1149768/AnalisisDeforestacionEcuador1990_2014.pdf/8285da57-c6ca-4e82-9be7-ccea3c9317cb.
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ [Internet]. 2017; 202(2016):18–27. Available from: https://doi.org/10.1016/j.rse.2017.06.031
Sreedhar Y, Nagaraju A, Murali Krishna G. An appraisal of land use/land cover change scenario of Tummalapalle, Cuddapah region, India—a remote sensing and GIS perspective. Adv Remote Sens. 2016; 05(04):232–45.
Jin DH, Ismail MH, Muharam FM, Alias MA. Evaluating the impacts of land use/land cover changes across topography against land surface temperature in Cameron Highlands. PLoS One [Internet]. 2021; 16(5 May):1–26. Available from: https://doi.org/10.1371/journal.pone.0252111 PMID: 34019599
QGIS Development Team. Quantim GIS (Version 3.1.2A-Coruna) [Internet]. Open Source Geospatial Foundation Project. [cited 2019 Dec 1]. Available from: https://qgis.org/en/site/.
Sawers L. Sustainable Floriculture in Ecuador. Washington DC.; 2005. Report No.: No. 2005–03.
Knapp G. Mountain agriculture for global markets: The case of greenhouse floriculture in Ecuador. Ann Am Assoc Geogr. 2017; 107(2):511–9.
Ministerio de Agricultura Ganadería y Pesca (MAGAP). Catastro de flores de exportación en función de su rentabilidad y uso del suelo [Internet]. Anexo 1 Memoria Técnica. 2010 [cited 2021 Jul 1]. Available from: http://geoportal.agricultura.gob.ec/geonetwork/srv/spa/resources.get?uuid=0b9ccc75-1a6342a9-a832-0d099b852abc&fname=mt_catastro_floricola.pdf&access=public.
Kumar S, Radhakrishnan N, Mathew S. Land use change modelling using a Markov model and remote sensing. Geomatics, Nat Hazards Risk [Internet]. 2014; 5(2):145–56. Available from: https://doi.org/10.1080/19475705.2013.795502
Liping C, Yujun S, Saeed S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS One. 2018; 13(7):1–23. https://doi.org/10.1371/journal.pone.0200493 PMID: 30005084
Hamad R, Balzter H, Kolo K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustain. 2018; 10(10):1–23.
Spedicato G. Discrete time Markov chains with R. R package version 0.6.9.7 [Internet]. The R Journal. 2017 [cited 2019 Jan 5]. Available from: https://journal.r-project.org/archive/2017/RJ-2017-036/index. html.
Instituto Nacional de Estadísticas y Censos (INEC). Clasificador Geográfico Estadístico–DPA [Internet]. Available from: https://www.ecuadorencifras.gob.ec/clasificador-geografico-estadistico-dpa/.
Meybeck M, Green P, Vörösmarty C. A new typology for mountains and other relief classes: An application to global continental water resources and population distribution. Mt Res Dev. 2001; 21(1):34–45.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computin; 2019.
Wang Z, Zhou J, Loaiciga H, Guo H, Hong S. A DPSIR model for ecological security assessment through indicator screening: A case study at Dianchi Lake in China. PLoS One. 2015; 10(6):1–13. https://doi.org/10.1371/journal.pone.0131732 PMID: 26107170
Valle C. Reseña histórica de la cartografía en el Instituto Nacional de Estadística y Censos [Internet]. 2015 [cited 2021 May 2]. Available from: https://www.ecuadorencifras.gob.ec/libros-metodologicosinec/.
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop). 2013; 36(1):27–46.
Clark M. Generalized Additive Models [Internet]. 2019 [cited 2021 May 2]. Available from: https://mclark.github.io/generalized-additive-models/.
Instituto Nacional de Estadísticas y Censos (INEC). Base de Datos–censo de población y vivienda [Internet]. 2020 [cited 2020 Jul 1]. Available from: https://www.ecuadorencifras.gob.ec/base-de-datoscenso-de-poblacion-y-vivienda/.
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies at high resolution for the Earth land surface areas. Sci Data. 2017; 4 170122. https://doi.org/10.1038/sdata.2017.122 PMID: 28872642
Barton NA, Farewell TS, Hallett SH. Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. npj Clean Water [Internet]. 2020; 3(1):20–2. Available from: https://doi.org/org/10.1038/s41545-020-0077-3
Wood S. Generalized additive models: An introduction with R. 2nd ed. CRC Press; 2017.
Hastie T. Generalized additive models (GAM). CRAN. 2020.
Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. J Appl Stat. 2004; 31 (7):799–815.
Deler J-P, Gomez N, Portais M. El manejo del espacio en Ecuador. In: Geografía básica del Ecuador Tomo I Geografía Histórica [Internet]. Quito: Centro Ecuatoriano De Investigación Geográfica; 1983. p. 267. Available from: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/03421.pdf.
Wigmore O, Gao J. Spatiotemporal dynamics of a páramo ecosystem in the northern Ecuadorian Andes 1988–2007. J Mt Sci. 2014; 11(3):708–16.
Camacho M. Los páramos ecuatorianos: Caracterización y consideraciones para su conservación y aprovechamiento sostenible. An la Univ Cent del Ecuador 372. 2013;76–92.
Garavito L. Los páramos en Colombia, un ecosistema en riesgo. Ingeniare, Univ Libr [Internet]. 2015; (19):127–36. Available from: http://www.unilibrebaq.edu.co/ojsinvestigacion/index.php/ingeniare/article/view/704.
Tejedor Garavito N, Álvarez E, Arango Caro S, Araujo Murakami A, Blundo C, Boza Espinoza TE, et al. Evaluación del estado de conservación de los bosques montanos en los Andes tropicales. Ecosistemas. 2012; 21(1–2):148–66.
Mosandl R, Günter S. Sustainable management of tropical mountain forests in Ecuador. In: Gradstein SR, Homeier J, Gansert D, editors. The tropical mountain forest patterns and processes in a iodiversity hotspot. Biodiversi. Göttingen: Göttingen Centre for Biodiversity and Ecology; 2008. p. 177–94.
Penningtona RT, Lavin M, Särkinen T, Lewis GP, Klitgaard BB, Hughes CE. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc Natl Acad Sci U S A. 2010; 107(31):13783–7. https://doi.org/10.1073/pnas.1001317107 PMID: 20643954
Anderson EP, Marengo J, Villalba R, Halloy S, Young B, Cordero D, et al. Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. En: Clim. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H, editors. Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE); 2011. p. 1–18.
Balvanera P. Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas. 2012; 21 (1–2):136–47.
Ataroff M. Selvas y bosques de montaña. In: Aguilera M, Azócar A, González-Jiménez E, editors. Biodiversidad en Venezuela. Tomo II. Caracas,: FONACIT-Fundación Polar; 2003. p. 762–810.
Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, et al. Changes in the global value of ecosystem services. Glob Environ Chang [Internet]. 2014; 26(1):152–8. Available from: https://doi.org/10.1016/j.gloenvcha.2014.04.002
Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC. Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci U S A. 2014; 111(20):7492–7497. https://doi.org/10.1073/pnas.1405557111 PMID: 24799685
Wassenaar T, Gerber P, Verburg PH, Rosales M, Ibrahim M, Steinfeld H. Projecting land use changes in the Neotropics: The geography of pasture expansion into forest. Glob Environ Chang. 2007; 17 (1):86–104.
Seto KC, Fragkias M, Güneralp B, Reilly MK. A meta-analysis of global urban land expansion. PLoS One. 2011; 6(8):e23777. https://doi.org/10.1371/journal.pone.0023777 PMID: 21876770
Mishra PK, Rai A, Rai SC. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt J Remote Sens Sp Sci [Internet]. 2020; 23(2):133–43. Available from: https://doi.org/10.1016/j.ejrs.2019.02.001.
Angel S, Parent J, Civco DL, Blei A, Potere D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog Plann. 2011; 75(2):53–107.
Moisés OA, Pablo DSJ. Urbanization in Ecuador: An overview using the functional urban area definition. Region. 2018; 5(3):39–48.
Singh D, Sharma R, Bhardwaj S. Micro-irrigation in floricultural crops. Agric Lett. 2020;(August).
Buytaert W, Cuesta-Camacho F, Tobón C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr. 2011; 20(1):19–33.
Hahs AK, McDonnell MJ, McCarthy MA, Vesk PA, Corlett RT, Norton BA, et al. A global synthesis of plant extinction rates in urban areas. Ecol Lett. 2009; 12(11):1165–73. https://doi.org/10.1111/j.14610248.2009.01372.x PMID: 19723284
Asamblea Nacional del Ecuador. Ley forestal y de conservación de áreas naturales y vida silvestre. Ecuador: Registro Oficial - Órgano del Gobierno Nacional del Ecuador; 2004.
Asamblea Nacional de la República del Ecuador. Código Orgánico del Ambiente. Ecuador: Registro Oficial - Órgano del Gobierno Nacional del Ecuador; 2017.
Ministerio del Ambiente Agua y Transición Ecológoca (MAATE). Ministerio del Ambiente, Agua y Transición Ecológica declara a Mojanda como Área de Protección Hídrica [Internet]. Boletín N 233 MAATE. 2021 [cited 2021 Sep 22]. Available from: https://www.ambiente.gob.ec/ministerio-del-ambiente-aguay-transicion-ecologico-declara-a-mojanda-como-area-de-proteccion-hidrica/.
Mather AS, Needle CL. The forest transition: A theoretical basis. Area. 1998; 30(2):117–24.
García-Llamas P, Geijzendorffer IR, García-Nieto AP, Calvo L, Suárez-Seoane S, Cramer W. Impact of land cover change on ecosystem service supply in mountain systems: A case study in the Cantabrian Mountains (NW of Spain). Reg Environ Chang. 2019; 19(2):529–42.
Kroll F, Müller F, Haase D, Fohrer N. Rural-urban gradient analysis of ecosystem services supply and demand dynamics. Land use policy [Internet]. 2012; 29(3):521–35. Available from: https://doi.org/10.1016/j.landusepol.2011.07.008
Damtea W, Kim D, Im S. Spatiotemporal analysis of land cover changes in the chemoga basin, Ethiopia, using Landsat and google earth images. Sustain. 2020; 12(9).