[en] Abstract
The collaboration between the Coordinated Regional Climate Downscaling Experiment (CORDEX) and the Earth System Grid Federation (ESGF) provides open access to an unprecedented ensemble of Regional Climate Model (RCM) simulations, across the 14 CORDEX continental-scale domains, with global coverage. These simulations have been used as a new line of evidence to assess regional climate projections in the latest contribution of the Working Group I (WGI) to the IPCC Sixth Assessment Report (AR6), particularly in the regional chapters and the Atlas.
Here, we present the work done in the framework of the Copernicus Climate Change Service (C3S) to assemble a consistent worldwide CORDEX grand ensemble, aligned with the deadlines and activities of IPCC AR6. This work addressed the uneven and heterogeneous availability of CORDEX ESGF data by supporting publication in CORDEX domains with few archived simulations and performing quality control. It also addressed the lack of comprehensive documentation by compiling information from all contributing regional models, allowing for an informed use of data. In addition to presenting the worldwide CORDEX dataset, we assess here its consistency for precipitation and temperature by comparing climate change signals in regions with overlapping CORDEX domains, obtaining overall coincident regional climate change signals. The C3S CORDEX dataset has been used for the assessment of regional climate change in the IPCC AR6 (and for the interactive Atlas) and is available through the Copernicus Climate Data Store (CDS).
Disciplines :
Earth sciences & physical geography
Author, co-author :
Diez-Sierra, Javier; Instituto de Física de Cantabria (IFCA), CSIC - Universidad de Cantabria, Santander, Spain ; Dept of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain
Iturbide, Maialen; Instituto de Física de Cantabria (IFCA), CSIC - Universidad de Cantabria, Santander, Spain
Gutiérrez, José M.; Instituto de Física de Cantabria (IFCA), CSIC - Universidad de Cantabria, Santander, Spain
Fernández, Jesús; Instituto de Física de Cantabria (IFCA), CSIC - Universidad de Cantabria, Santander, Spain
Milovac, Josipa; Instituto de Física de Cantabria (IFCA), CSIC - Universidad de Cantabria, Santander, Spain
Cofiño, Antonio S.; Instituto de Física de Cantabria (IFCA), CSIC - Universidad de Cantabria, Santander, Spain
Cimadevilla, Ezequiel; Dept of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain
Nikulin, Grigory; Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
Levavasseur, Guillaume; Institut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, France
Kjellström, Erik; Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
Bülow, Katharina; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, 20095 Hamburg, Germany
Horányi, András; European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
Brookshaw, Anca; European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
García-Díez, Markel; Predictia Intelligent Data Solutions SL, Santander, Spain
Pérez, Antonio; Predictia Intelligent Data Solutions SL, Santander, Spain
Baño-Medina, Jorge; Instituto de Física de Cantabria (IFCA), CSIC - Universidad de Cantabria, Santander, Spain
Ahrens, Bodo; Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Germany
Alias, Antoinette; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Ashfaq, Moetasim; Computational Sciences and Engineering Division (CSED), Oak Ridge National Laboratory, Oak Ridge, TN, USA
Bukovsky, Melissa; National Center for Atmospheric Research, Boulder, Colorado, USA
Buonomo, Erasmo; Met Office, Exeter, UK
Caluwaerts, Steven; Department of Physics and Astronomy, Ghent University, Ghent, Belgium
Chan Chou, Sin; National Institute for Space Research (INPE), Sao Paulo, Brazil
Christensen, Ole B.; National Centre for Climate Research, Danish Meteorological Institute, Copenhagen, Denmark
Ciarlo´, James M.; The Abdus Salam International Centre for Theoretical Physics
Coppola, Erika; The Abdus Salam International Centre for Theoretical Physics
Corre, Lola; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Demory, Marie-Estelle; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Djurdjevic, Vladimir; Faculty of Physics, University of Belgrade, Serbia
Evans, Jason P.; Climate Change Research Centre, University of New South Wales, Australia
Feldmann, Hendrik; Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Jacob, Daniela; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, 20095 Hamburg, Germany
Jayanarayanan, Sanjay; Centre for Climate Change Research, Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India
Katzfey, Jack; Commonwealth Scientific and Industrial Research Organisation Oceans and Atmosphere, Australia
Keuler, Klaus; Brandenburg University of Technology, Cottbus - Senftenberg, Chair of Atmospheric Processes, Cottbus, Germany
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Levent Kurnaz, Mehmet; Center for Climate Change and Policy Studies, Bogazici University, 34342 Istanbul, Turkey
Laprise, René; Centre ESCER, Earth and Atmospheric Sciences Dept., Montréal, Canada
Lionello, Piero; Fondazione Centro Euromediterraneo sui Cambiamenti Climatici. Lecce, Italy, in collaboration with the CLM-Community
McGinnis, Seth; National Center for Atmospheric Research, Boulder, Colorado, USA
Mercogliano, Paola; Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Caserta, Italy
Nabat, Pierre; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Önol, Bariş; Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul Technical University, Istanbul, Turkey
Ozturk, Tugba; Department of Physics, Faculty of Engineering and Natural Sciences, Isik University, 34980 Istanbul, Turkey
Panitz, Hans-Jürgen; Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Paquin, Dominique; Ouranos, Montréal, QC, Canada
Pieczka, Ildikó; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary
Raffaele, Francesca; The Abdus Salam International Centre for Theoretical Physics
Reca Remedio, Armelle; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, 20095 Hamburg, Germany
Scinocca, John; Canadian Centre for Climate Modelling and Analysis (CCCma), Victoria, Canada
Sevault, Florence; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Somot, Samuel; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Steger, Christian; Deutscher Wetterdienst, Offenbach, Germany
Tangang, Fredolin; Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Teichmann, Claas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, 20095 Hamburg, Germany
Termonia, Piet; Royal Meteorological Institute, Brussels, Belgium
Thatcher, Marcus; Commonwealth Scientific and Industrial Research Organisation Oceans and Atmosphere, Australia
Torma, Csaba; ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Budapest, Hungary
van Meijgaard, Erik; Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
Vautard, Robert; Institut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, France
Warrach-Sagi, Kirsten; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany
Winger, Katja; Centre ESCER, Earth and Atmospheric Sciences Dept., Montréal, Canada
Zittis, George; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
Boé, J., S. Somot, L. Corre, and P. Nabat, 2020: Large discrepancies in summer climate change over Europe as projected by global and regional climate models: Causes and consequences. Climate Dyn., 54, 2981-3002, https:// doi.org/10.1007/s00382-020-05153-1.
Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 1847-1856, https://doi.org/10.1007/s00382-013-2011-6.
Buontempo, C., and Coauthors, 2022: The Copernicus Climate Change Service: Climate science in action. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/ BAMS-D-21-0315.1, in press.
Christensen, J. H., and O. B. Christensen, 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7-30, https://doi.org/10.1007/s10584-006-9210-7.
Christensen, O. B., W. J. Gutowski, G. Nikulin, and S. Legutke, 2020: CORDEX archive design. CORDEX Doc., 23 pp., https://is-enes-data.github.io/cordex_ archive_specifications.pdf.
Cinquini, L., and Coauthors, 2014: The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comput. Syst., 36, 400-417, https://doi.org/10.1016/j.future.2013.07.002.
Coppola, E., and Coauthors, 2021a: Assessment of the European climate projections as simulated by the large EURO-CORDEX regional and global climate model ensemble. J. Geophys. Res. Atmos., 126, e2019JD032356, https:// doi.org/10.1029/2019JD032356.
Coppola, E., and Coauthors 2021b: Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble. Climate Dyn., 57, 1293-1383, https://doi.org/10.1007/s00382-021-05640-z.
Cucchi, M., G. P. Weedon, A. Amici, N. Bellouin, S. Lange, H. Müller Schmied, H. Hersbach, and C. Buontempo, 2020: WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data, 12, 2097-2120, https:// doi.org/10.5194/essd-12-2097-2020.
Curry, J. A., and A. H. Lynch, 2002: Comparing Arctic regional climate model. Eos, Trans. Amer. Geophys. Union, 83, 87, https://doi.org/10.1029/2002EO000051.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, https://doi.org/10.1002/qj.828.
Demory, M.-E., and Coauthors, 2020: European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 13, 5485-5506, https:// doi.org/10.5194/gmd-13-5485-2020.
Déqué, M., S. Somot, E. Sánchez-Gómez, C. M. Goodess, D. Jacob, G. Lenderink, and O. B. Christensen, 2012: The spread amongst ENSEMBLES regional scenarios: Regional climate models, driving general circulation models and interannual variability. Climate Dyn., 38, 951-964, https://doi.org/10.1007/ s00382-011-1053-x.
Diez-Sierra, J., and Coauthors, 2022: CORDEX model component description. Zenodo, https://doi.org/10.5281/zenodo.6553526.
Doblas-Reyes, F. J., and Coauthors, 2021: Linking global to regional climate change. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1363-1512, https://doi.org/10.1017/ 9781009157896.012.
Dosio, A., and Coauthors, 2020: A tale of two futures: Contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environ. Res. Lett., 15, 064007, https://doi.org/10.1088/1748-9326/ab7fde.
Fiore, S., P. Nassisi, A. Nuzzo, M. Mirto, L. Cinquini, D. Williams, and G. Aloisio, 2019: A climate change community gateway for data usage & data archive metrics across the Earth System Grid Federation. 11th Int. Workshop on Science Gateways, Ljubljana, Slovenia, IWSG.
Fu, C., and Coauthors, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257-266, https://doi.org/10.1175/ BAMS-86-2-257.
Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos., 124, 5696-5723, https:// doi.org/10.1029/2018JD030094.
Giorgi, F., and W. J. Gutowski, 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour., 40, 467-490, https:// doi.org/10.1146/annurev-environ-102014-021217.
Giorgi, F., C. Torma, E. Coppola, N. Ban, C. Schär, and S. Somot, 2016: Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci., 9, 584-589, https://doi.org/10.1038/ngeo2761.
Giorgi, F., and Coauthors, 2022: The CORDEX-CORE EXP-I initiative: Description and highlight results from the initial analysis. Bull. Amer. Meteor. Soc., 103, E293-E310, https://doi.org/10.1175/BAMS-D-21-0119.1.
Gutiérrez, C., S. Somot, P. Nabat, M. Mallet, L. Corre, E. van Meijgaard, O. Perpiñán, and M. Á. Gaertner, 2020: Future evolution of surface solar radiation and photovoltaic potential in Europe: Investigating the role of aerosols. Environ. Res. Lett., 15, 034035, https://doi.org/10.1088/1748-9326/ab6666.
Gutiérrez, J. M., and Coauthors, 2021a: Atlas. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1927-2058, https://doi.org/10.1017/9781009157896.021.
Gutiérrez, J. M., and Coauthors, 2021b: Atlas supplementary material. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 24 pp., https://www.ipcc.ch/report/ar6/wg1/downloads/ report/IPCC_AR6_WGI_Atlas_SM.pdf.
Gutowski, W. J., Jr., and Coauthors, 2016: WCRP Coordinated Regional Downscaling Experiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev., 9, 4087-4095, https://doi.org/10.5194/gmd-9-4087-2016.
IPCC, 2021a: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 3949 pp., https://doi.org/10.1017/9781009157896.
IPCC, 2021b: Annex II: Models. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 2087-2138, https://doi.org/10.1017/9781009157896.016.
Iturbide, M., and Coauthors, 2020: An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data, 12, 2959-2970, https://doi.org/10.5194/ essd-12-2959-2020.
IPCC, and Coauthors, 2021: Repository supporting the implementation of FAIR principles in the IPCC-WGI Atlas. Zenodo, accessed 17 November 2022, https://doi.org/10.5281/zenodo.5171760.
IPCC, and Coauthors, 2022: Implementation of FAIR principles in the IPCC: The WGI AR6 Atlas repository. Sci. Data, 9, 629, https://doi.org/10.1038/ s41597-022-01739-y.
Jacob, D., and Coauthors, 2020: Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9.
Katragkou, E., and Coauthors, 2015: Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geosci. Model Dev., 8, 603-618, https://doi.org/10.5194/gmd-8-603-2015.
Knist, S., and Coauthors, 2017: Land-atmosphere coupling in EURO-CORDEX evaluation experiments. J. Geophys. Res. Atmos., 122, 79-103, https:// doi.org/10.1002/2016JD025476.
Krishnan, R., and Coauthors, 2020: Introduction to climate change over the Indian region. Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MoES), Government of India, R. Krishnan et al., Eds., Springer, 1-20.
Legasa, M. N., and Coauthors, 2020: Assessing multidomain overlaps and grand ensemble generation in CORDEX regional projections. Geophys. Res. Lett., 47, e2019GL086799, https://doi.org/10.1029/2019GL086799.
Lennard, C. J., G. Nikulin, A. Dosio, and W. Moufouma-Okia, 2018: On the need for regional climate information over Africa under varying levels of global warming. Environ. Res. Lett., 13, 060401, https://doi.org/10.1088/1748-9326/ aab2b4.
Matte, D., R. Laprise, J. M. Thériault, and P. Lucas-Picher, 2017: Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Climate Dyn., 49, 563-574, https://doi.org/10.1007/ s00382-016-3358-2.
Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 1337-1362, https://doi.org/10.1175/BAMS-D-11-00223.1.
Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756, https:// doi.org/10.1038/nature08823.
Nikulin, G., E. Kjellström, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus, 63A, 41-55, https://doi.org/10.1111/j.1600-0870.2010.00466.x.
Ranasinghe, R., and Coauthors, 2021: Climate change information for regional impact and for risk assessment. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1767- 1926, https://doi.org/10.1017/9781009157896.014.
Remedio, A. R., and Coauthors, 2019: Evaluation of new CORDEX simulations using an updated Köppen-Trewartha climate classification. Atmosphere, 10, 726, https://doi.org/10.3390/atmos10110726.
Seneviratne, S. I., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1513-1766, https://doi.org/10.1017/9781009157896.013.
Solman, S. A., and Coauthors, 2013: Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Model performance and uncertainties. Climate Dyn., 41, 1139-1157, https:// doi.org/10.1007/s00382-013-1667-2.
Sørland, S. L., and Coauthors, 2021: COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: A review. Geosci. Model Dev., 14, 5125-5154, https:// doi.org/10.5194/gmd-14-5125-2021.
Spinoni, J., and Coauthors, 2020: Future global meteorological drought hot spots: A study based on CORDEX data. J. Climate, 33, 3635-3661, https:// doi.org/10.1175/JCLI-D-19-0084.1.
Spinoni, J., and Coauthors, 2021: Global exposure of population and land-use to meteorological droughts under different warming levels and SSPs: A CORDEX-based study. Int. J. Climatol., 41, 6825-6853, https://doi.org/10.1002/joc.7302.
Takle, E. S., and Coauthors, 1999: Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results. J. Geophys. Res., 104, 19 443-19 461, https://doi.org/10.1029/1999JD900352.
Takle, E. S., J. Roads, B. Rockel, W. J. Gutowski, R. W. Arritt, I. Meinke, C. G. Jones, and A. Zadra, 2007: Transferability intercomparison: An opportunity for new insight on the global water cycle and energy budget. Bull. Amer. Meteor. Soc., 88, 375-384, https://doi.org/10.1175/BAMS-88-3-375.
Tangang, F., and Coauthors, 2020: Projected future changes in rainfall in Southeast Asia based on CORDEX-SEA multi-model simulations. Climate Dyn., 55, 1247-1267, https://doi.org/10.1007/s00382-020-05322-2.
Teichmann, C., and Coauthors, 2021: Assessing mean climate change signals in the global CORDEX-CORE ensemble. Climate Dyn., 57, 1269-1292, https:// doi.org/10.1007/s00382-020-05494-x.
van der Linden, P., and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre ENSEMBLES Rep., 160 pp., http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf.
van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5, https://doi.org/10.1007/ s10584-011-0148-z.
Vautard, R., and Coauthors, 2013: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn., 41, 2555-2575, https://doi.org/10.1007/s00382-013-1714-z.
Vautard, R., and Coauthors, 2021: Evaluation of the large EURO-CORDEX regional climate model ensemble. J. Geophys. Res. Atmos., 126, e2019JD032344, https://doi.org/10.1029/2019JD032344.
von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664-3673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
Zittis, G., P. Hadjinicolaou, M. Klangidou, Y. Proestos, and J. Lelieveld, 2019: A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Change, 19, 2621-2635, https://doi.org/10.1007/s10113-019-01565-w.