Pollution; Aquatic Science; Oceanography; Trace elements
Abstract :
[en] This study investigated for the first time the oxidative biomarkers responses in all larval stages of sea urchin. The contamination effects were reproduced by using contaminated seawater to concentrations measured in the area adjacent to an old asbestos mine at factors of 5 and 10. The results suggested that the concentrations were not sufficiently high to induce a major oxidative stress. The biometric differences make this method a more sensitive approach for assessing the effects on sea urchin larvae. Measurements of specific activities of antioxidant enzymes at each stage suggested a high capacity of the larvae to respond to oxidative stress. This normal activity of the organism must be considered in future research. This work also highlighted the importance of spawners provenance in ecotoxicological studies. These data are essential to better understand the stress responses of sea urchin larvae and provide baseline information for later environmental assessment research.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ali, Z., Malik, R.N., Qadir, A., Heavy metals distribution and risk assessment in soils affected by tannery effluents. Chem. Ecol. 29:8 (2013), 676–692, 10.1080/02757540.2013.810728.
Amiard-Triquet, C., Rainbow, P.S., Romeo, M., Tolerance to Environmental Contaminants. 2011, CRC Press.
Andral, B., Chiffoleau, J.F., Galgani, F., Tomasino, C., Emery, E., Pluquet, F., Thebault, H., Evaluation de la contamination chimique du site de Canari: campagne Canari II. Rapport d'étude à l'Office de l'Environnement Corse. Convention n° 2002/358, 2004.
Beiras, R., Duran, I., Bellas, J., Sánchez-Marín, P., Biological effects of contaminants: Paracentrotus lividus sea urchin embryo test with marine sediment elutriates. ICES Techniques in Marine Environnemental Sciences., 51, 2012, 13 http://dx.doi.org/10.25607/OBP-262.
Benedetti, M., Giuliani, M.E., Regoli, F., Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology. Ann. N. Y. Acad. Sci. 1340:1 (2015), 8–19, 10.1111/nyas.12698.
Beyersmann, D., Hartwig, A., Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch. Toxicol. 82 (2008), 493–512, 10.1007/s00204-008-0313-y.
Bonduriansky, R., Crean, A.J., What are parental condition-transfer effects and how can they be detected?. Methods Ecol. Evol. 9:3 (2018), 450–456, 10.1111/2041-210X.12848.
Boudouresque, C.F., Verlaque, M., Paracentrotus lividus. Biology and ecology. Developments in aquaculture and fisheries science, 38, 2013, 297–327, 10.1016/B978-0-12-396491-5.00021-6.
Bougis, P., Corre, M.C., Etienne, M., Sea-urchin larvae as a tool for assessment of quality of sea water. Ann. Inst. Oceanogr. 55:1 (1979), 21–26.
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:1–2 (1976), 248–254, 10.1016/0003-2697(76)90527-3.
BRGM, Mine de Canari – Rejet des stériles en mer et évolution du trait de côte. Rapport BRGM/ R39277, 1997 114p.
Buttino, I., Hwang, J.S., Romano, G., Sun, C.K., Liu, T.M., Pellegrini, D., Gaion, A., Sartori, D., Detection of malformations in sea urchin plutei exposed to mercuric chloride using different fluorescent techniques. Ecotoxicol. Environ. Saf. 123 (2016), 72–80, 10.1016/j.ecoenv.2015.07.027.
Byrne, M., Ho, M., Selvakumaraswamy, P., Nguyen, H.D., Dworjanyn, S.A., Davis, A.R., Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc. R. Soc. B Biol. Sci. 276 (2009), 1883–1888, 10.1098/rspb.2008.1935.
Carballeira, C., Ramos-Gómez, J., Martín-Díaz, L., DelValls, T.A., Identification of specific malformations of sea urchin larvae for toxicity assessment: application to marine pisciculture effluents. Mar. Environ. Res. 77 (2012), 12–22, 10.1016/j.marenvres.2012.01.001.
Cary, L., Genevier, M., Frissant, N., Lions, J., Etude du fond hydrogéochimique de la Corse. Impacts des activités minières sur la qualité des eaux. BRGM/ RP-61469-FR, 2013 164p.
Chan, C.Y., Wang, W.-X., A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. Aquat. Toxicol. 204 (2018), 160–170, 10.1016/j.aquatox.2018.09.011.
Chan, C.Y., Wang, W.-X., Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River estuary, southern China. Environ. Pollut. 251 (2019), 264–276, 10.1016/j.envpol.2019.04.140.
Chapman, P.M., Integrating toxicology and ecology: putting the “eco” into ecotoxicology. Mar. Pollut. Bull. 44:1 (2002), 7–15, 10.1016/S0025-326X(01)00253-3.
Chapman, P.M., Ecological risk assessment (ERA) and hormesis. Sci. Total Environ. 288:1–2 (2002), 131–140, 10.1016/s0048-9697(01)01120-2.
Crain, C.M., Kroeker, K., Halpern, B.S., Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11:12 (2008), 1304–1315, 10.1111/j.1461-0248.2008.01253.x.
Crean, A.J., Immler, S., Evolutionary consequences of environmental effects on gamete performance. Philos. Trans. R. Soc., B, 376, 2021, 20200122, 10.1098/rstb.2020.0122.
Del Río, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., Barroso, J.B., Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 141:2 (2006), 330–335, 10.1104/pp.106.078204.
Di Giulio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W., Jewell, C.S., Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 8:12 (1989), 1103–1123, 10.1002/etc.5620081203.
Durkina, V.B., Evtushenko, Z.S., Changes in activity of certain enzymes in sea urchin embryos and larvae after exposure of adult organisms to heavy metals. Mar. Ecol. Prog. Ser. 72 (1991), 111–115.
El Idrissi, O., Marengo, M., Aiello, A., Gobert, S., Pasqualini, V., Ternengo, S., Seasonal change in trace element concentrations of Paracentrotus lividus: its use as a bioindicator. Ecol. Indic., 112, 2020, 106063, 10.1016/j.ecolind.2019.106063.
El Idrissi, O., Gobert, S., Delmas, A., Demolliens, M., Aiello, A., Pasqualini, V., Ternengo, S., Effects of trace elements contaminations on the larval development of Paracentrotus lividus using an innovative experimental approach. Aquat. Toxicol., 246, 2022, 106152, 10.1016/j.aquatox.2022.106152.
Farombi, E.O., Adelowo, O.A., Ajimoko, Y.R., Biomarkers of oxidative stress and heavy metal levels as indicators of environ mental pollution in african cat fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public Health 4:2 (2007), 158–165, 10.3390/ijerph2007040011.
Fernandez, N., Beiras, R., Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10 (2001), 263–271, 10.1023/a:1016703116830.
Foo, S.A., Byrne, M., Acclimatization and adaptive capacity of marine species in a changing ocean. Adv. Mar. Biol. 74 (2016), 69–116, 10.1016/bs.amb.2016.06.001.
Gallo, A., Boni, R., Tosti, E., Gamete quality in a multistressor environment. Environ. Int., 138, 2020, 105627, 10.1016/j.envint.2020.105627.
Geraci, F., Pinsino, A., Turturici, G., Savona, R., Giudice, G., Sconzo, G., Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s. Biochem. Biophys. Res. Commun. 322 (2004), 873–877, 10.1016/j.bbrc.2004.08.005.
Gharred, T., Jebali, J., Belgacem, M., Mannai, R., Achour, S., Assessment of the individual and mixture toxicity of cadmium, copper, and oxytetracycline, on the embryo-larval development of the sea urchin Paracentrotus lividus. Environ. Sci. Pollut. Res. 23 (2016), 18064–18072, 10.1007/s11356-016-6988-3.
Gharred, C., Jenzri, M., Bouraoui, Z., Guerbej, H., Jebali, J., Gharred, T., Application of the Paracentrotus lividus sea-urchin embryo-larval bioassay to the marine pollution biomonitoring program in the Tunisian coast. Environ. Sci. Pollut. Res. 29 (2021), 5787–5797, 10.1007/s11356-021-16101-9.
Ghribi, F., Richir, J., Bejaoui, S., Boussoufa, D., Marengo, M., El Cafsi, M., Gobert, S., Trace elements and oxidative stress in the ark shell arca noae from a Mediterranean coastal lagoon (Bizerte lagoon, Tunisia): are there health risks associated with their consumption?. Environ. Sci. Pollut. Res. 27 (2020), 15607–15623, 10.1007/s11356-020-07967-2.
Giuliani, M.E., Regoli, F., Identification of the Nrf2- Keap1 pathway in the european eel Anguilla Anguilla: role for a transcriptional regulation of antioxidant genes in aquatic organisms. Aquat. Toxicol. 150 (2014), 117–123, 10.1016/j.aquatox.2014.03.003.
Gligorovski, S., Strekowski, R., Barbati, S., Vione, D., Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 115:24 (2015), 13051–13092, 10.1021/cr500310b.
Gobert, S., Richir, J., Indices to determine the status of marine coastal water bodies: development, applications and support to management. Geo-Eco-Trop. 43:3 (2019), 353–364 http://hdl.handle.net/2268/246542.
Gobert, S., Pasqualini, V., Dijoux, J., Lejeune, P., Durieux, E.D.H., Marengo, M., Trace element concentrations in the apex predator swordfish (Xiphias gladius) from a Mediterranean fishery and risk assessment for consumers. Mar. Pollut. Bull. 120:1–2 (2017), 364–369, 10.1016/j.marpolbul.2017.05.029.
Greani, S., Lourkisti, R., Berti, L., Marchand, B., Giannettini, J., Santini, J., Quilichini, Y., Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei). Ecotoxicology 26:7 (2017), 930–941, 10.1007/s10646-017-1822-3.
Guendouzi, Y., Soualili, D.L., Boulahdid, M., Boudjenoun, M., Mezali, K., Seasonal variation in bioavailability of trace metals in the echinoid Paracentrotus lividus (Lamarck, 1816) from algerian coastal waters: effect of physiological indices. Reg. Stud. Mar. Sci. 14 (2017), 112–117, 10.1016/j.rsma.2017.05.010.
Haber, F., Weiss, J., Über die katalyse des hydroperoxydes. Naturwissenschaften 20 (1932), 948–950, 10.1007/BF01504715.
Halliwell, B., Gutteridge, J.M.C., Free Radicals in Biology and Medicine. 5th ed., 2015, Oxford University Press, Oxford, 10.1093/acprof:oso/9780198717478.001.0001.
Halpern, B., Selkoe, K., Micheli, F., Kappel, C., Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21:5 (2007), 1301–1315, 10.1111/j.1523-1739.2007.00752.x.
Ighodaro, O.M., Akinloye, O.A., First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 54 (2018), 287–293, 10.1016/j.ajme.2017.09.001.
Islam, M.S., Tanaka, M., Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar. Pollut. Bull. 48:7–8 (2004), 624–649, 10.1016/j.marpolbul.2003.12.004.
Janssens, T.K.S., Roelofs, D., Van Straalen, N.M., Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Sci. 16 (2009), 3–18, 10.1111/j.1744-7917.2009.00249.x.
Kantin, R., Pergent-Martini, C., Pergent, G., Étude de la Contamination Par les éléments Traces en Méditerranée à l'aide d'organismes Bio-intégrateurs. first ed., 2015, Union des océanographes de France, Paris.
Ko, T.Z., Safo, M.K., Musayev, F.N., Di Salvo, M.L., Wang, C., Wu, S.H., Abraham, D.J., Structure of human erythrocyste catalase. Acta crystallographica – section DBiological Crystallography 56 (2000), 241–246, 10.1107/S0907444999015930.
Kobayashi, N., Okamura, H., Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects. Chemosphere 55 (2004), 1403–1412, 10.1016/j.chemosphere.2003.11.052.
Lafabrie, C., Pergent, G., Kantin, R., Pergent-Martini, C., Gonzalez, J.-L., Trace metals assessment in water, sediment, mussel and seagrass species – validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68:11 (2007), 2033–2039, 10.1016/j.chemosphere.2007.02.039.
Lagadic, L., Caquet, T., Amiard, J.C., Ramade, F., Utilisation de Biomarqueurs Pour la Surveillance de la qualité de l'environnement. 1998, Lavoisier Technique & Documentation, Paris.
Lawrence, J.M., The effect of stress and disturbance on echinoderms. Zool. Sci. 7 (1990), 17–28.
Levine, R.L., Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic. Biol. Med. 32:9 (2002), 790–796, 10.1016/S0891-5849(02)00765-7.
Li, X.B., Hou, X.L., Mao, Q., Zhao, Y.L., Cheng, Y.X., Wang, Q., Toxic effects of copper on antioxidative and metabolic enzymes of the marine gastropod, onchidium struma. Arch. Environ. Contam. Toxicol. 56:4 (2009), 776–784, 10.1007/s00244-009-9290-2.
Liu, X., Wang, W.-X., Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. Sci. Total Environ. 544 (2016), 281–290, 10.1016/j.scitotenv.2015.11.120.
Martin, S., Richier, S., Pedrotti, M.-L., Dupont, S., Castejon, C., Gerakis, Y., Kerros, M.-E., Oberhansli, F., Teyssié, J.-L., Jeffree, R., Gattuso, J.-P., Early development and molecular plasticity in the Mediterranean Sea urchin Paracentrotus lividus exposed to CO2-driven acidification. Journal of experimental biology 214:8 (2011), 1357–1368, 10.1242/jeb.051169.
McCord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:22 (1969), 6049–6055, 10.1016/S0021-9258(18)63504-5.
Migdal, C., Serres, M., Espèces réactives de l'oxygène et stress oxydant. Med. Sci. (Paris) 27:4 (2011), 405–412, 10.1051/medsci/2011274017.
Migliaccio, O., Castellano, I., Romano, G., Palumbo, A., Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide. Aquat. Toxicol. 156 (2014), 125–134, 10.1016/j.aquatox.2014.08.007.
Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., Reactive oxygen gene network of plants. Trends Plant Sci. 9:10 (2004), 490–498, 10.1016/j.tplants.2004.08.009.
Mostofa, K.M.G., Liu, C.Q., Vione, D., Gao, K., Ogawa, H., Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems. Environ. Pollut. 182 (2013), 461–478, 10.1016/j.envpol.2013.08.005.
Munday, P.L., Warner, R.R., Monro, K., Pandolfi, J.M., Marshall, D.J., Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16:12 (2013), 1488–1500, 10.1111/ele.12185.
Navrot, N., Rouhier, N., Gelhaye, E., Jacquot, J.P., Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129:1 (2007), 185–195, 10.1111/j.1399-3054.2006.00777.x.
Nieto, R., Garcia-Barrera, T., Gomez-Ariza, J.L., Lopez-Barea, J., Environmental monitoring of Domingo rubio stream (Huelva estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas. Environ. Pollut. 158:2 (2010), 401–408, 10.1016/j.envpol.2009.09.005.
Nogueira, L.S., Domingos-Moreira, F.X.V., Klein, R.D., Bianchini, A., Wood, C.M., Influence of environmentally relevant concentrations of zn, cd and ni and their binary mixtures on metal uptake, bioaccumulation and development in larvae of the purple sea urchin Strongylocentrotus purpuratus. Aquat. Toxicol., 230, 2021, 105709, 10.1016/j.aquatox.2020.105709.
Paredes, E., Bellas, J., The use of cryopreserved sea urchin embryos (Paracentrotus lividus) in marine quality assessment. Chemosphere 128 (2015), 278–283, 10.1016/j.chemosphere.2015.02.007.
Pétinay, S., Chataigner, C., Basuyaux, O., Standardisation du développement larvaire de l'oursin, Paracentrotus lividus, pour l’évaluation de la qualité d'une eau de mer. C. R. Biol. 332:12 (2009), 1104–1114, 10.1016/j.crvi.2009.08.002.
Ramade, F., Introduction à l’écotoxicologie: Fondements et Applications. 2007, Lavoisier Technique & Documentation, Paris.
Rendell-Bhatti, F., Paganos, P., Pouch, A., Mitchell, C., D'Aniello, S., Godley, B.J., Pazdro, K., Arnone, M.I., Jimenez-Guri, E., Developmental toxicity of plastic leachates on the sea urchin Paracentrotus lividus. Environ. Pollut., 269, 2021, 115744, 10.1016/j.envpol.2020.115744.
Richardson, C.R., Burritt, D.J., Allan, B.J.M., Lamare, M.D., Microplastic ingestion induces asymmetry and oxidative stress in larvae of the sea urchin pseudechinus huttoni. Mar. Pollut. Bull., 168, 2021, 112369, 10.1016/j.marpolbul.2021.112369.
Roccheri, M.C., Agnello, M., Bonaventura, R., Matranga, V., Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem. Biophys. Res. Commun. 321:1 (2004), 80–87, 10.1016/j.bbrc.2004.06.108.
Rojkind, M., Dominguez-Rosales, J.-A., Nieto, N., Greenwel, P., Role of hydrogen peroxide and oxidative stress in healing responses. Cellular and Molecular Life Sciences 59:11 (2002), 1872–1891, 10.1007/pl00012511.
Roméo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard, J.P., Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat. Toxicol. 48:2–3 (2000), 185–194, 10.1016/S0166-445X(99)00039-9.
Rouane-Hacene, O., Boutiba, Z., Benaissa, M., Belhaouari, B., Francour, P., Guibbolini-Sabatier, M.E., Risso-De Faverney, C., Seasonal assessment of biological indices, bioaccumulation, and bioavailability of heavy metals in sea urchins Paracentrotus lividus from Algerian west coast, applied to environmental monitoring. Environ. Sci. Pollut. Res. 25 (2017), 11238–11251, 10.1007/s11356-017-8946-0.
Ruocco, N., Bertocci, I., Munari, M., Musco, L., Caramiello, D., Danovaro, R., Zupo, V., Costantini, M., Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: the case study of bagnoli-coroglio brownfield (Mediterranean Sea). Mar. Environ. Res., 154, 2020, 104865, 10.1016/j.marenvres.2019.104865.
Saco-Álvarez, L., Durán, I., Ignacio, Lorenzo J., Beiras, R., Methodological basis for the optimization of a marine sea-urchin embryo test (SET) for the ecological assessment of coastal water quality. Ecotoxicol. Environ. Saf. 73:4 (2010), 491–499, 10.1016/j.ecoenv.2010.01.018.
Salvo, A., Cicero, N., Vadalà, R., Mottese, A.F., Bua, D., Mallamace, D., Giannetto, C., Dugo, G., Toxic and essential metals determination in commercial seafood: Paracentrotus lividus by ICP-MS. Nat. Prod. Res. 30:6 (2015), 657–664, 10.1080/14786419.2015.1038261.
Santon, A., Irato, P., Medici, V., D'Incà, R., Albergoni, V., Sturniolo, G.C., Effect and possible role of zn treatment in LEC rats, an animal model of Wilson's disease. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1637:1 (2003), 91–97, 10.1016/S0925-4439(02)00218-1.
Sappal, R., Burka, J., Dawson, S., Kamunde, C., Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): cross-talk between waterborne and dietary uptake. Aquat. Toxicol. 91:4 (2009), 281–290, 10.1016/j.aquatox.2008.10.007.
Spencer, K.L., MacLeod, C.L., Tuckett, A., Johnson, S.M., Source and distribution of trace metals in the Medway and swale estuariesKent. Marine Pollution Bulletin. 52:2 (2006), 226–231, 10.1016/j.marpolbul.2005.10.019.
Streets, D.G., Horowitz, H.M., Lu, Z., Levin, L., Thackray, C.P., Sunderland, E.M., Five hundred years of anthropogenic mercury: spatial and temporal release profiles. Environ. Res. Lett., 14, 2019, 084004, 10.1088/1748-9326/ab281f.
Ternengo, S., Marengo, M., El Idrissi, O., Yepka, J., Pasqualini, V., Gobert, S., Spatial variations in trace element concentrations of the sea urchin, Paracentrotus lividus, a first reference study in the Mediterranean Sea. Mar. Pollut. Bull. 129:1 (2018), 293–298, 10.1016/j.marpolbul.2018.02.049.
Uthicke, S., Deshpande, N.P., Liddy, M., Patel, F., Lamare, M., Wilkins, M.R., Little evidence of adaptation potential to ocean acidification in sea urchins living in “Future Ocean” conditions at a CO2 vent. Ecol. Evol. 9:17 (2019), 10004–10016, 10.1002/ece3.5563.
Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M., Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64:2 (2006), 178–189, 10.1016/j.ecoenv.2005.03.013.
Vlahogianni, T.H., Valavanidis, A., Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis. Chem. Ecol. 23:5 (2007), 361–371, 10.1080/02757540701653285.
Winston, G.W., Di Giulio, R.T., Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19:2 (1991), 137–161, 10.1016/0166-445X(91)90033-6.
Winterbourn, C.C., Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82–83 (1995), 969–974, 10.1016/0378-4274(95)03532-X.
Xian, X., Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil 113 (1989), 257–264, 10.1007/BF02280189.
Yamaguchi, S., Miura, C., Kikuchi, K., Celino, F.T., Agusa, T., Tanabe, S., Miura, T., Zinc is an essential trace element for spermatogenesis. Proc. Natl. Acad. Sci. U. S. A. 106:26 (2009), 10859–10864, 10.1073/pnas.0900602106.
Zhadan, P.M., Vaschenko, M.A., Almyashova, T.N., Effects of environmental factors on reproduction of the sea urchin Strongylocentrotus intermedius. Agnello, Maria, (eds.) Sea Urchin from Environment to Aquaculture and Biomedicine, 2017, IntechOpen, 10.5772/intechopen.69511.
Zhang, Y., Song, J., Yuan, H., Xu, Y., He, Z., Concentrations of cadmium and zinc in seawater of Bohai Bay and their effects on biomarker responses in the bivalve Chlamys farreri. Arch. Environ. Contam. Toxicol. 59 (2010), 120–128, 10.1007/s00244-009-9461-1.
Zhao, C., Feng, W., Wei, J., Zhang, L., Sun, P., Chang, Y., Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. J. Mar. Biol. Assoc. U. K. 96:1 (2015), 185–195, 10.1017/S0025315415001617.
Zheng, N., Wang, S., Dong, W., Hua, X., Li, Y., Song, X., Chu, Q., Hou, S., Li, Y., The toxicological effects of mercury exposure in marine fish. Bull. Environ. Contam. Toxicol. 102 (2019), 714–720, 10.1007/s00128-019-02593-2.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.