Glaciomarine sequence stratigraphy in the Mississippian Río Blanco Basin, Argentina, southwestern Gondwana. Basin analysis and palaeoclimatic implications for the Late Paleozoic Ice Age during the Tournaisian.
Ezpeleta, Miguel; Rustán, Juan José; Balseiro, Diegoet al.
2020 • In Journal of the Geological Society, 177 (6), p. 1107 - 1128
Age constraints; Argentina; Basin analysis; Geographics; Highstand systems tract; Late paleozoic ice age; Mississippians; Pennsylvanians; Sequence stratigraphy; Transgressive systems tracts; Geology
Abstract :
[en] The Late Paleozoic Ice Age (LPIA) has been well recorded in the uppermost Mississippian–Pennsylvanian of Gondwana. Nevertheless, little is known about the temporal and geographic dynamics, particularly during the early Mississippian. We report on exceptional Tournaisian glaciomarine stratigraphic sections from central Argentina (Río Blanco Basin). Encompassing c. 1400 m, these successions contain conspicuous glacigenic strata with age constraints provided by palaeontological data and U/Pb detrital zircon age spectra. A variety of marine, glaciomarine and fan-deltaic environments indicate relative sea-level variations mainly associated with tectonism and repetitive cycles of glacial activity. Provenance analysis indicates a source from the Sierras Pampeanas basement located to the east. Fifteen sequences were grouped into three depositional models: (1) Transgressive Systems Tracts (TST) to Highstand Systems Tracts (HST) sequences unaffected by glacial ice; (2) Lowstand Systems Tracts (LST) to TST and then to HST with glacial influence; and (3) non-glacial Falling-Stage Systems Tracts (FSST) to TST and HST. The glacial evidence indicates that the oldest Mississippian glacial stage of the LPIA in southwestern Gondwana is constrained to the middle Tournaisian. In contrast with previous descriptions of Gondwanan coeval glacial records, our sequence analysis confirms complex hierarchical climate variability, rather than a single episode of ice advance and retreat.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ezpeleta, Miguel ; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina ; Universidad Nacional de La Rioja, La Rioja, Argentina
Rustán, Juan José; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina ; Universidad Nacional de La Rioja, La Rioja, Argentina
Balseiro, Diego ; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
Dávila, Federico Miguel; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
Dahlquist, Juan Andrés; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
Vaccari, Norberto Emilio; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina ; Universidad Nacional de La Rioja, La Rioja, Argentina
Sterren, Andrea Fabiana; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
Prestianni, Cyrille ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab ; Palaeontology Department, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Cisterna, Gabriela Adriana; CICTERRA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina ; Universidad Nacional de La Rioja, La Rioja, Argentina
Basei, Miguel ; Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil
Language :
English
Title :
Glaciomarine sequence stratigraphy in the Mississippian Río Blanco Basin, Argentina, southwestern Gondwana. Basin analysis and palaeoclimatic implications for the Late Paleozoic Ice Age during the Tournaisian.
UNLAR - Universidad Nacional de La Rioja ANPCyT - Agencia Nacional de Promoción Científica y Tecnológica
Funding text :
Acknowledgements D. Murua, D. Muñoz, E. Sferco, M. Salas, F. Degrange, H. Canelo and F. Meroi kindly collaborated with the authors during field work. Lodging during field days was provided by the building company Benito Roggio S.A. This study was possible thanks to financial support from CONICET and ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) through FONCyT PICT-2015-3146, Secyt-UNLaR 2015-10732 and 2015-0422 granted to Miguel Ezpeleta; Secyt-UNLaR 2017-6993 granted to Juan José Rustán and Emilio Vaccari; FONCyT PICT 2016 0843, PIP0178 CONICET and P-UE N° 22920160100016 granted to CICTERRA; and an internship for J.A. Dahlquist in the Geosciences Institute of the Sao Paulo University supported by grant FAPESP 2018/06837-3.Funding This work was funded by the Fondo para la Investigación Científica y Tecnológica (2015/3146), Secretaria de Ciencia y Tecnica, Universidad Nacional de La Rioja (2015-10732), Secretaria de Ciencia y Tecnica, Universidad Nacional de La Rioja (2015-0422), Secretaria de Ciencia y Tecnica, Universidad Nacional de La Rioja (2017-6993), Fondo para la Investigación Científica y Tecnológica (2016 0843) and Fundação de Amparo à Pesquisa do Estado de São Paulo (2018/06837-3).
Álvarez, J., Mpodozis, C. et al. 2011. Detrital zircons from late Paleozoic accretionary complexes in north-central Chile (28–32 S): possible fingerprints of the Chilenia terrane. Journal of South American Earth Sciences, 32, 460–476, https://doi.org/10.1016/j.jsames.2011.06.002
Amos, A.J. 1958. Some Lower Carboniferous brachiopodsfrom the Volcan Formation, San Juan, Argentina. Journal of Paleontology, 32, 838-845.
Amos, A.J. 1964. A review of the marine Carboniferous stratigraphy of Argentina. In: Proceeding 22 International Geological Congress, 53–72.
Astini, R.A., Dávila, F.M. et al. 2005. Cuencas de la región precordillerana. In: Chebli, G.A., Cortiñas, J.S. and Spalletti, L.A. (eds) Frontera Exploratoria de La Argentina. Instituto Argentino del Petróleo y del Gas, Buenos Aires, Argentina, 115–146.
Astini, R.A., Martina, F. and Dávila, F.M. 2011. La Formación Los Llantenes en la Precordillera de Jagüé (La Rioja) y la identificación de un episodio de extensión en la evolución temprana de las cuencas del Paleozoico superior en el oeste argentino. Andean Geology, 38, 245–267, https://doi.org/10.5027/andgeoV38n2-a01
Astini, R.A., Martina, F., Ezpeleta, M., Dávila, F.M. and Cawood, P.A. 2009. Chronology from rifting to foreland basin in the Paganzo Basin (Argentina), and a reapprisal on the ‘Eo-and Neohercynian’ tectonics along Western Gondwana. In: XII Congreso Geológico Chileno. Chile, S9-010, Santiago, 40–43.
Azcuy, C.L. and Carrizo, H.A. 1995. Archaeosigillaria conferta (Carbonifero Temprano) en el Bolson de Jague, La Rioja, Argentina. Ameghiniana, 32, 279–286.
Azcuy, C.L., Carrizo, H.A. and Caminos, R. 1999. Carbonífero y Pérmico de las Sierras Pampeanas, Famatina, Precordillera, Cordillera Frontal y Bloque de San Rafael. In: Caminos, R. (ed.) Geología Argentina. Instituto de Geología y Recursos Minerales, Buenos Aires, Argentina, 261–318.
Bábek, O., Kalvoda, J., Cossey, P., Šimícěk, D., Devuyst, F.-X. and Hargreaves, S. 2013. Facies and petrophysical signature of the Tournaisian/Viséan (Lower Carboniferous) sea-level cycle in carbonate ramp to basinal settings of the Wales-Brabant massif, British Isles. Sedimentary Geology, 284, 197–213, https://doi.org/10.1016/j.sedgeo.2012.12.008
Báez, W., Astini, R.A., Ezpeleta, M. and Martina, F. 2014. Facies volcaniclásticas y paleoambiente sedimentario de laFormación Punta del Agua, Carbonífero Temprano de la Precordillera Septentrional, La Rioja. Revista de la Asociación Geológica Argentina, 71, 210–232.
Bann, K.L. and Fielding, C.R. 2004. An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia. Geological Society, London, Special Publications, 228, 273–310, https://doi.org/10.1144/GSL.SP.2004. 228.01.13
Birgenheier, L.P., Fielding, C.R., Rygel, M.C., Frank, T.D. and Roberts, J. 2009. Evidence for Dynamic Climate Change on Sub-106-Year Scales from the Late Paleozoic Glacial Record, Tamworth Belt, New South Wales, Australia. Journal of Sedimentary Research, 79, 56–82. https://doi.org/10.2110/jsr. 2009.013
Borrello, A. 1955. Los conglomerados del Cerro Punta Negra, al oeste de Jagüé. Revista de la Asociación Geológica Argentina, 10, 46–53.
Brezinski, D.K., Cecil, C.B., Skema, V.W. and Stamm, R. 2008. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 143–151. https://doi.org/10.1016/j.palaeo.2008.03.042
Brezinski, D.K., Cecil, C.B. and Skema, V.W. 2010. Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States. GSA Bulletin, 122, 265–281, https://doi.org/10.1130/B26556.1
Buggisch, W., Joachimski, M.M., Sevastopulo, G. and Morrow, J.R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 273–292. https://doi.org/10.1016/j.palaeo.2008.03.043
Caminos, R., Fauqué, L. and Limarino, C. 1990. Las fases diastróficas intracarboníferas de la Precordillera y su correlación regional. In: Late Paleozoic of South America, Annual Meeting Working Group project IUGS 211, Abstracts, Buenos Aires. 132–146.
Caputo, M.V., de Melo, J.H.G., Streel, M. and Isbell, J.L. 2008. Late Devonian and Early Carboniferous glacial records of South America. In: Fielding, C.R., Frank, T.D. and Isbell, J.L. (eds) Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Papers 441, 161–173. https://doi.org/10.1130/2008.2441(11)
Cardozo, N. and Allmendinger, R.W. 2013. Spherical projections with OSXStereonet. Computers & Geosciences, 51, 139–205, https://doi.org/10. 1016/j.cageo.2012.07.021
Carrera, M.G., Rustán, J.J., Vaccari, N.E. and Ezpeleta, M. 2018. A new Mississippian hexactinellid sponge from the western Gondwana: Taxonomic and paleobiogeographic implications. Acta Palaeontologica Polonica, 63, 63–70, https://doi.org/10.4202/app.00403.2017
Carrizo, H.A. and Azcuy, C.L. 1998. El perfil del cerro Mudadero y su flora fósil. Bolsón de Jagüé, Provincia de La Rioja. Argentina. Acta Geológica Lilloana, 18, 81–99.
Carrizo, H.A. and Azcuy, C.L. 2015. Floras Neodevónicas-Eocarboníferas de Argentina. Opera Lilloana, 49, 1–292.
Casquet, C., Pankhurst, R.J. et al. 2005. Grenvillian massif-type anorthosites in the Sierras Pampeanas. Journal of the Geological Society, 162, 9–12, https://doi.org/10.1144/0016-764904-100
Catuneanu, O. 2017. Sequence Stratigraphy: Guidelines for a Standard Methodology. In: Montenari, M.B.T.-S.T. (eds) Advances in Sequence Stratigraphy. Academic Press, 1–57. https://doi.org/10.1016/bs.sats.2017.07.003
Catuneanu, O. and Zecchin, M. 2013. High-resolution sequence stratigraphy of clastic shelves II: controls on sequence development. Marine and Petroleum Geology, 39, 26–38, https://doi.org/10.1016/j.marpetgeo.2012.08.010
Catuneanu, O., Abreu, V. et al. 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1–33. https://doi.org/10.1016/j. earscirev.2008.10.003
Catuneanu, O., Galloway, W.E., Kendall, C.G.S.C., Miall, A.D., Posamentier, H.W., Strasser, A. and Tucker, M.E. 2011. Sequence Stratigraphy: Methodology and Nomenclature. Newsletters on Stratigraphy, 44, 173–245. https://doi.org/10.1127/0078-0421/2011/0011
Cisterna, G.A. 2011. Morphology and systematics of Late Palaeozoic syringothyrid brachiopods from West-Central Argentina. Memoirs of the Association of Australasian Palaeontologists, 41, 315–325.
Cisterna, G.A. and Isaacson, P.E. 2003. A new Carboniferous brachiopod genus from South America. Alcheringa, 27, 63–73. https://doi.org/10.1080/03115510308619545
Clark, J.A. and Primus, J.A. 1987. Sea-level changes resulting from future retreat of ice sheets: An effect of CO2 warming of the climate. In: Tooley, M.J. and Shennan, I. (eds), Sea-Level Changes. London, Institute of British Geography, 356–370.
Clifton, H.E. 2007. A reexamination of facies models for clastic shorelines. In: Posamentier, H.W. and Walker, H.W. (eds) Facies Models Revisited. SEPM Special Publication, 84, 293–337.
Coira, B., Cisterna, C.E., Ulbrich, H.H. and Cordani, U.G. 2016. Extensional Carboniferous magmatism at the western margin of Gondwana: Las Lozas valley, Catamarca, Argentina. Andean Geology, 43, 105–126, https://doi.org/10.5027/andgeoV43n1-a06
Collins, W. J. 2002. Nature of extensional accretionary orogens, Tectonics, 21, https://doi.org/10.1029/2000TC001272
Collo, G., Astini, R.A., Cardona, A., Do Campo, M.D. and Cordani, U. 2008. Edades de metamorfismo en las unidades con bajo grado de la región central del Famatina: la impronta del ciclo orogénico oclóyico (Ordovícico). Revista Geológica de Chile, 35, 191–213, https://doi.org/10.4067/S0716-02082008000200001
Conrad, C.P. 2013. The solid Earth’s influence on sea level. Geological Society of America Bulletin, 125, 1027–1052. https://doi.org/10.1130/B30764.1
Coughlin, T.J. 2000. Linked Origen-Oblique Fault Zones in the Central Argentine Andes: The Basis for a New Model for Andean Orogenesis and Metallogenesis. Queensland University.
andCrowley, T.J. and Baum, S.K. 1991. Estimating Carboniferous sea-level fluctuations from Gondwanan ice extent. Geology, 19, 975–977, https://doi. org/10.1130/0091-7613(1991)019<0975:ECSLFF>2.3.CO;2
Daemon, R. F. 1974. Palinomorfos-guias do Devoniano Superior e Carbonífero Inferior das bacias do Amazonas e Parnaíba. Anais da Academia Brasileira de Ciências,46, 549–587.
Dahlquist, J.A., Pankhurst, R.J. et al. 2013. Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Research, 23, 1617–1630, https://doi.org/10.1016/j.gr.2012.08.013
Dahlquist, J.A., Alasino, P.H., Basei, M.A.S., Cámera, M.M.M., Grande, M.M. and Neto, M.d.C.C. 2018a. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian–Early Carboniferous magmatism in SW Gondwana (27–32° LS): an example of geodynamic switching. International Journal of Earth Sciences, 107, 2575–2603, https://doi.org/10.1007/s00531-018-1615-9
Dahlquist, J.A., Alasino, P.H., Basei, M.A.S., Cámera, M.M.M., Grande, M.S.M., Neto, M.d.C.C. and Larrecharte, M.G. 2018b. Recurrent intrusive episodes in the Paleozoic metasedimentary upper crust during the Early Carboniferous time: The Veladero granitoid stock and the peraluminous andesite. Journal of South American Earth Sciences, 88, 80–93, https://doi. org/10.1016/j.jsames.2018.08.011
Dalrymple, R.W., Mackay, D.A., Ichaso, A.A. and Choi, K.S. 2012. Processes, morphodynamics, and facies of tide-dominated estuaries. In: Principles of Tidal Sedimentology. Springer, 79–107.
Dávila, F., Martina, F. and Ávila, P. 2017. Mississippian glaciation in western Gondwana driven by mantle interaction. In: XX Congreso Geológico Argentino. San Miguel de Tucumán, 77–79.
Davis, J.L. and Mitrovica, J.X. 1996. Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America. Nature, 379, 331–333, https://doi.org/10.1038/379331a0
DeCelles, P.G., Langford, R.P. and Schwartz, R.K. 1983. Two new methods of paleocurrent determination from trough cross-stratification. Journal of Sedimentary Research, 53, 629–642.
DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Pivnik, D.A., Pequera, N. and Srivastava, P. 1991. Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology, 38, 567–590, https://doi.org/10.1111/j.1365-3091.1991.tb01009.x
Dietrich, P., Ghienne, J.-F., Lajeunesse, P., Normandeau, A., Deschamps, R. and Razin, P. 2018. Deglacial sequences and glacio-isostatic adjustment: Quaternary compared with Ordovician glaciations. In: Le Heron, D.P., Hogan, K.A., Phillips, E.R., Huuse, M., Busfield, M.E. and Graham, A.G.C. (eds) Glaciated Margins: The Sedimentary and Geophysical Archive. Geological Society, Special Publications, London, 475, 149–180. https://doi.org/10.1144/SP475.9
Dykstra, M., Kneller, B. and Milana, J.P. 2006. Deglacial and postglacial sedimentary architecture in a deeply incised paleovalley-paleofjord–The Pennsylvanian (late Carboniferous) Jejenes Formation, San Juan, Argentina. Geological Society of America Bulletin, 118, 913–937. https://doi.org/10. 1130/B25810.1
Evans, F.J. 1999. Palaeobiology of Early Carboniferous lacustrine biota of the Waaipoort Formation (Witteberg Group), South Africa. Palaeontologia Africana, 35, 1–6. https://doi.org/10.1016/B978-1-4557-3143-5.00008-0
Evans, F.J. 2005. Taxonomy, Palaeoecology and Palaeobiogeography of Some Palaeozoic Fish of Southern Gondwana. University of Stellenbosch.
Eyles, C.H., Eyles, N. and Miall, A.D. 1985. Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 51, 15–84, https://doi.org/10.1016/0031-0182(85)90080-X
Ezpeleta, M. 2009. El Paleozoico Superior de La Región Central Del Famatina: Un Enfoque Tectosedimentario. Universidad Nacional de Córdoba.
Ezpeleta, M. and Astini, R.A. 2008. Labrado y relleno de un paleovalle glacial en la base de la Formación Río del Peñón (Carbonífero Superior), Precordillera Septentrional. In: Simposio Argentino Del Paleozoico Superior.
Farrell, W.E. and Clark, J.A. 1976. On postglacial sea level. Geophysical Journal of the Royal Astronomical Society, 46, 3, 647–667, https://doi.org/10.1111/j. 1365-246X.1976.tb01252.x
Fauqué, L. and Limarino, C.O. 1991. El Carbonífero de Agua de Carlos (Precordillera de La Rioja), su importancia tectónica y paleoambiental. Revista de la Asociación Geológica Argentina, 46, 103–114.
Fernández-Seveso, F. and Tankard, A.J. 1995. Tectonics and Stratigraphy of the Late Paleozoic Paganzo Basin of Western Argentina and its Regional Implications. In: Tankard, A.J., Soruco, R.S. and Welsink, H.J. (eds) Petroleum Basins of South America, American Association of Petroleum Geologists, Memoirs, Tulsa, OK, 62, 285–301. https://doi.org/10.1306/M62593C13
Fielding, C.R. 2018. Stratigraphic architecture of the Cenozoic succession in the McMurdo Sound region, Antarctica: An archive of polar palaeoenvironmental change in a failed rift setting. Sedimentology, 65, 1–61. https://doi.org/10. 1111/sed.12413
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T. and Roberts, J. 2008a. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, 165, 129–140, https://doi.org/10.1144/0016-76492007-036
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T. and Roberts, J. 2008b. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D. and Isbell, J.L. (eds) Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Papers, 441, 41–57. https://doi.org/10.1130/2008.2441(03)
Frank, T.D., Birgenheier, L.P. et al. 2008. Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphic and ice-distal isotopic records. In: Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Papers, 441, 331–342. https://doi.org/10.1130/2008.2441(23)
Gallastegui Suárez, G., González Menéndez, L., Rubio Ordóñez, Á, Cuesta Fernández, A. and Gerdes, A. 2014. Origin and provenance of igneous clasts from late Palaeozoic conglomerate formations (Del Ratón and El Planchón) in the Andean Precordillera of San Juan, Argentina. Journal of Iberian Geology, 261–282, http://doi.org/10.5209/rev_JIGE.2014.v40.n2.45298
Giles, P.S. 2012. Low-latitude Ordovician to Triassic brachiopod habitat temperatures (BHTs) determined from δ18O [brachiopod calcite]: A cold hard look at ice-house tropical oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 317–318, 134–152. https://doi.org/10.1016/j.palaeo.2012.01.002
González, C.R. 1985. Esquema bioestratigráfico del Paleozoico Superior marino de la Cuenca Uspallata-Iglesia, República Argentina. Acta Geológica Lilloana, 16, 231–244.
González, C.R. 1994. Early Carboniferous Bivalvia from Western Argentina. Alcheringa, 18, 169–185, https://doi.org/10.1080/03115518.1994.9638775
González, C.R. and Bossi, G.E. 1986. Los depósitos carbónicos al oeste de Jagüel, La Rioja. In: IV Congreso Argentino de Paleontología y Bioestratigrafía, Mendoza, Argentina, 231–236.
González, C.R. and Bossi, G.E. 1987. Descubrimiento del Carbonífero inferior marino al oeste de Jagüé, La Rioja. I:IV Congreso Latinoamericano de Paleontología. Santa Cruz de La Sierra, Bolivia, 713-724.
Gulbranson, E.L., Montañez, I.P., Schmitz, M.D., Limarino, C.O., Isbell, J.L., Marenssi, S.A. and Crowley, J.L. 2010. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. Geological Society of America Bulletin, 122, 1480–1498. https://doi.org/10. 1130/B30025.1
Gulbranson, E.L., Isbell, J.L., Montañez, I.P., Limarino, C.O., Marenssi, S.A., Meyer, K. and Hull, C. 2014. Reassessment of mid-Carboniferous glacial extent in southwestern Gondwana (Rio Blanco Basin, Argentina) inferred from paleo-mass transport of diamictites. Gondwana Research, 25, 1369–1379. https://doi.org/10.1016/j.gr.2013.03.017
Gutiérrez, P.R. and Limarino, C.O. 2006. El perfil del sinclinal del Rincon Blanco (noroeste de La Rioja): El limite Carbonifero-Permico en el noroeste Argentino. Ameghiniana, 43, 687–703.
Harrison, C.G.A. 1990. Long-term eustasy and epeirogeny in continents, In: Revelle, R.R. (ed.) Sea-Level Change. National Academy Press, Washington, D.C., 141–158.
andHenry, L.C., Isbell, J.L. and Limarino, C.O. 2008. Carboniferous glacigenic deposits of the proto-Precordillera of west-central Argentina. In: Fielding, C.R., Frank, T.D. and Isbell, J.L. (eds) Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Papers, 441, 131–142. https://doi.org/10.1130/2008.2441(09)
Howard, J.L. 1993. The statistics of counting clasts in rudites: a review, with examples from the upper Palaeogene of southern California, USA. Sedimentology, 40, 157–174, https://doi.org/10.1111/j.1365-3091.1993. tb01759.x
Iannizzotto, N.F., Rapela, C.W., Baldo, E.G.A., Galindo, C., Fanning, C.M. and Pankhurst, R.J. 2013. The Sierra Norte-Ambargasta batholith: Late Ediacaran–Early Cambrian magmatism associated with Pampean transpres-sional tectonics. Journal of South American Earth Sciences, 42, 127–143, https://doi.org/10.1016/j.jsames.2012.07.009
Isaacson, P.E. and Dutro, J.T. 1999. Lower Carboniferous brachiopods from Sierra de Almeida, northern Chile. Journal of Paleontology, 73, 625–633, https://doi.org/10.1017/S0022336000032443
Isaacson, P.E., Diaz-Martinez, E., Grader, G.W., Kalvoda, J., Babek, O. and Devuyst, F.X. 2008. Late Devonian-earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 126–142, https://doi.org/10.1016/j. palaeo.2008.03.047
Isbell, J.L., Miller, M.F., Wolfe, K.L. and Lenaker, P.A. 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? Geological Society of America Special Papers, 370, 5–24. https://doi.org/10.1130/0-8137-2370-1.5
Johnson, H.D., Baldwin, C.T. and Reading, H.G. 2002. Shallow Clastic Seas. In: Sedimentary Environments: Processes, Facies, and Stratigraphy. Blackwell Science, Oxford, 232–279.
andKammer, T.W. and Matchen, D.L. 2008. Evidence for eustasy at the Kinderhookian-Osagean (Mississippian) boundary in the United States: Response to late Tournaisian glaciation. In: Fielding, C.R., Frank, T.D. and Isbell, J.L. (eds) Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Papers, 441, 261–274. https://doi.org/10.1130/2008.2441(18)
Kellerhals, P. and Matter, A. 2003. Facies analysis of a glaciomarine sequence, the Neoproterozoic Mirbat Sandstone Formation, Sultanate of Oman. Eclogae Geologicae Helvetiae, 96, 49–70. https://doi.org/10.1007/S00015-003-1068-3
Lakin, J.A., Marshall, J.E.A., Troth, I. and Harding, I.C. 2016. Greenhouse to icehouse: a biostratigraphic review of latest Devonian–Mississippian glaciations and their global effects. Geological Society, London, Special Publications, 423, 439–464. https://doi.org/10.1144/SP423.12
Lees, A. 1997. Biostratigraphy, sedimentology and palaeobathymetry of Waulsortian buildups and peri-Waulsortian rocks during the Late Tournaisian regression, Dinant area, Belgium. Geological Journal, 32, 1–36, https://doi.org/10.1002/(SICI)1099-1034(199703)32:1<1::AID-GJ715>3.0.CO;2-0
Limarino, C.O. and Césari, S.N. 1993. Reubicación estratigráfica de la Formación Cortaderas y definición del Grupo Angualasto (Carbonífero Inferior, Precordillera de San Juan). Revista de la Asociación Geológica Argentina, 47, 61–72.
Limarino, C.O. and Spalletti, L.A. 2006. Paleogeography of the upper Paleozoic basins of southern South America: An overview. Journal of South American Earth Sciences, 22, 134–155, https://doi.org/10.1016/j.jsames.2006.09.011
Limarino, C.O., Tripaldi, A., Marenssi, S.A. and Fauqué, L. 2006. Tectonic, sea-level, and climatic controls on Late Paleozoic sedimentation in the western basins of Argentina. Journal of South American Earth Sciences, 22, 205–226, https://doi.org/10.1016/j.jsames.2006.09.009
Limarino, C.O., Césari, S.N., Spalletti, L.A., Taboada, A.C., Isbell, J.L., Geuna, S.E. and Gulbranson, E.L. 2014. A paleoclimatic review of southern South America during the late Paleozoic: A record from icehouse to extreme greenhouse conditions. Gondwana Research, 25, 1396–1421. https://doi.org/10.1016/j.gr.2012.12.022
Limarino, C.O., Schencman, L.J., Alonso Muruaga, P. and Césari, S.N. 2017. Análisis estratigráfico de las sequencias Neopaleozoicas de la Precordillera septentrional. Revista de la Asociacion Geologica Argentina, 74, 449–467.
Lobato, G. and Borghi, L. 2014. Estratigrafia de sequências do contato formacional Longá/Poti (Carbonífero Inferior) em testemunhos de sondagem da Bacia do Parnaíba. Boletim de Geociencias Petrobras, 22, 213–235.
Longhitano, S.G. 2011. The record of tidal cycles in mixed silici–bioclastic deposits: examples from small PlioPleistocene peripheral basins of the microtidal Central Mediterranean Sea. Sedimentology, 58, 691–719, https://doi.org/10.1111/j.1365-3091.2010.01179.x
Lønne, I. 1995. Sedimentary facies and depositional architecture of ice-contact glaciomarine systems. Sedimentary Geology, 98, 13–43, https://doi.org/10. 1016/0037-0738(95)00025-4
López Gamundí, O.R. and Martínez, M. 2000. Evidence of glacial abrasion in the Calingasta–Uspallata and western Paganzo basins, mid-Carboniferous of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 159, 145–165. https://doi.org/10.1016/S0031-0182(00)00044-4
López Gamundí, O.R., Limarino, C.O. and Césari, S.N. 1992. Late Paleozoic paleoclimatology of central west Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 91, 305–329. https://doi.org/10.1016/0031-0182(92)90074-F
andLópez Gamundí, O.R., Espejo, I.S., Conaghan, P.J. and Powell, C.M. 1994. Southern South America. Geological Society of America, Memoir, 1984, 281–329, https://doi.org/10.1130/MEM184-p281
MacEachern, J.A. and Bann, K.L. 2008. The role of ichnology in refining shallow marine facies models. In: Hampson, G.J., Steel, R.J., Burgess, P.M. and Dalrymple, R.W. (eds) Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy. SEPM Special Publication 90, Tulsa, USA, 73–116.
Martina, F. Viramonte, J.M., Astini, R.A., Pimentel, M.M. Dantas, E. 2011. Mississippian volcanism in the south-central Andes: New U-Pb SHRIMP zircon geochronology and whole-rock geochemistry. Gondwana Research, 19, 524-534, https://doi.org/10.1016/j.gr.2010.07.004
Martina, F., Canelo, H.N., Dávila, F.M., de Hollanda, M.H.M. and Teixeira, W. 2018. Mississippian lamprophyre dikes in western Sierras Pampeanas, Argentina: Evidence of transtensional tectonics along the SW margin of Gondwana. Journal of South American Earth Sciences, 83, 68–80, https://doi. org/10.1016/j.jsames.2018.02.006
Martins-Neto, M.A. and Catuneanu, O. 2010. Rift sequence stratigraphy. Marine and Petroleum Geology, 27, 247–253, https://doi.org/10.1016/j.marpetgeo. 2009.08.001
Matchen, D.L. and Kammer, T.W. 2006. Incised valley fill interpretation for Mississippian Black Hand Sandstone, Appalachian Basin, USA: Implications for glacial eustasy at Kinderhookian–Osagean (Tn2–Tn3) boundary. Sedimentary Geology, 191, 89–113. https://doi.org/10.1016/j.sedgeo.2006. 02.002
Miall, A.D. 1996. The Geology of Fluvial Deposits, Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, New York, 668.
Milana, J.P. and Di Pasquo, M. 2019. New chronostratigraphy for a lower to upper Carboniferous strike-slip basin of W-Precordillera (Argentina): Paleogeographic, tectonic and glacial importance. Journal of South American Earth Sciences, 96, https://doi.org/10.1016/j.jsames.2019.102383
Miller, K.G., Kominz, M.A. et al. 2005. The Phanerozoic record of global sea-level change. Science, 310, 1293–1298, https://doi.org/10.1126/science. 1116412
Milne, G.A. and Mitrovica, J.X. 2008. Searching for eustasy in deglacial sea-level histories. Quaternary Science Reviews, 27, 2292–2302. https://doi.org/10. 1016/j.quascirev.2008.08.018
McCarthy, P.J. and Plint, A.G. 1998. Recognition of interfluve sequence boundaries: integrating paleopedology and sequence stratigraphy. Geology, 26, 387–390, https://doi.org/10.1130/0091-7613(1998)026<0387:ROISBI>2. 3.CO;2
McGhee, G.R.J. 2018. Carboniferous Giants and Mass Extinction. The Late Paleozoic Ice Age World. Columbia University Press, New York.
Montañez, I.P. and Poulsen, C.J. 2013. The Late Paleozoic Ice Age: An Evolving Paradigm. Annual Review of Earth and Planetary Sciences, 41, 629–656. https://doi.org/10.1146/annurev.earth.031208.100118
Mulder, T., Syvitski, J.P.M., Migeon, S., Faugeres, J.-C. and Savoye, B. 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20, 861–882, https://doi.org/10.1016/j. marpetgeo.2003.01.003
Mutti, E. 1992. Turbidite Sandstones. Agip, Istituto di geologia, Università di Parma.
Niemeyer, H., Urzua, F. and Rubinstein, C.V. 1997. Nuevos antecedentes estratigráficos y sedimentológicos de la Formación Zorritas, Devónico-Carbonífero de Sierra Almeida, Región de Antofagasta, Chile. Revista Geológica de Chile, 24, 25–43.
Ogg, J.G., Ogg, G.M. and Gradstein, F.M. 2016. 8-Devonian. A Concise Geologic Time Scale, 85–98. https://doi.org/10.1016/b978-0-444-59467-9. 00008-x
Pazos, P.J. 2007. Cyclostratigraphy during the Carboniferous glaciations in central western Argentina: glacial ageism and tectonic framework. In: Milani, E.J., Iannuzzi, R., Chemale, F. and Frantz, J.C. (eds) Problems in Western Gondwana Geology. RGEOTEC – Rede de Estudos Geotectônicos, Gramado, Brazil, 108–114.
Pazos, P.J., Rusconi, F.J., Loss, M.L., Gutiérrez, C. and Heredia, A.M. 2017. Stratigraphy of the El Imperial formation (Penssylvanian-cisuralian) in the Atuel Canyon, San Rafael basin. Revista de la Asociacion Geologica Argentina, 74, 155-162.
Perez Loinaze, V.S. 2007. A Mississippian miospore biozone for Southern Gondwana. Palynology, 31, 101–117. https://doi.org/10.2113/gspalynol.31.1. 101
Perez Loinaze, V.S., Limarino, C.O. and Césari, S.N. 2010. Glacial events in Carboniferous sequences from Paganzo and Río Blanco Basins (Northwest Argentina): Palynology and depositional setting. Geologica Acta, 8, 399–418. https://doi.org/10.1344/105.000001579
Playford, G. and Melo, J.H.G. 2010. Morphological variation and distribution of the Tournaisian (Early Mississippian) miospore Waltzispora lanzonii Daemon 1974. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 256, 183–193. https://doi.org/10.1127/0077-7749/2010/0043
Playford, G., Borghi, L. and Lobato, G. 2012. Palynological dating and correlation of Early Mississippian (Tournaisian) diamictite sections, Parnaíba Basin, northeastern Brazil. Revista Española de Micropaleontología, 44, 1–22.
Postma, G. 1990. Depositional architecture and facies of river and fan deltas: a synthesis. In: Colella, A. and Prior, D.B. (eds) Coarse Grained Deltas. Spec Publ. Int. Ass. Sediment, 10, 13–27.
Potter, P.E. and Pettijohn, F.J. 1977. Paleocurrents and Basin Analysis. Springer-Verlag, Heidelberg.
Poty, E. 2016. The Dinantian (Mississippian) succession of southern Belgium and surrounding areas: stratigraphy improvement and inferred climate reconstruction. Geologica Belgica, 19, 177–200, https://doi.org/10.20341/gb.2016.014
Powell, R.D. 1990. Glacimarine processes at grounding-line fans and their growth to ice-contact deltas. Geological Society, London, Special Publications, 53, 53–73, https://doi.org/10.1144/GSL.SP.1990.053.01.03
Powell, R.D. and Cooper, J.M. 2002. A glacial sequence stratigraphic model for temperate, glaciated continental shelves. Geological Society, London, Special Publications, 203, 215–244, https://doi.org/10.1144/GSL.SP.2002. 203.01.12
Prestianni, C., Rustán, J.J. et al. 2015. Early seed plants from Western Gondwana: Paleobiogeographical and ecological implications based on Tournaisian (Lower Carboniferous) records from Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 210–219. https://doi.org/10.1016/j. palaeo.2014.10.039
Rapela, C.W., Pankhurst, R.J. et al. 2007. The Rio de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews, 83, 49–82, https://doi. org/10.1016/j.earscirev.2007.03.004
Rapela, C.W., Verdecchia, S.O. et al. 2016. Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedi-mentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research, 32, 193–212, https://doi.org/10.1016/j.gr. 2015.02.010
Rosa, E.L.M., Vesely, F.F., Isbell, J.L., Kipper, F., Fedorchuk, N.D. and Souza, P.A. 2019. Constraining the timing, kinematics and cyclicity of Mississippian-Early Pennsylvanian glaciations in the Paraná Basin, Brazil. Sedimentary Geology, 384, 29–49. https://doi.org/10.1016/j.sedgeo.2019.03.001
Rubinstein, C.V., Petus, E. and Niemeyer, H. 2017. Palynostratigraphy of the Zorritas Formation, Antofagasta region, Chile: Insights on the Devonian/ Carboniferous boundary in western Gondwana. Geoscience Frontiers, 8, 493–506. https://doi.org/10.1016/j.gsf.2016.04.005
Rustán, J.J., Vaccari, N.E. and Astini, R.A. 2011. Early Devonian Trilobites from the Sierra de las Minitas, Northermost Precordillera (La Rioja Province), Argentina. Ameghiniana, 48, 226–241, https://doi.org/10.5710/AMGH.v48i1 (335)
Rygel, M.C., Fielding, C.R., Frank, T.D. and Birgenheier, L.P. 2008. The Magnitude of Late Paleozoic Glacioeustatic Fluctuations: A Synthesis. Journal of Sedimentary Research, 78, 500–511. https://doi.org/10.2110/jsr. 2008.058
Sabattini, N., Carrizo, H.A. and Azcuy, C.L. 2001. Invertebrados marinos de la Formación Malimán (Carbonífero Inferior), y su relación con las asociaciones paleoflorísticas. Revista de la Asociación Geológica Argentina, 56, 111–120.
Saltzman, M.R. 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian–lower Osagean), western United States: Implications for seawater chemistry and glaciation. Geological Society of America Bulletin, 114, 96–108. https://doi.org/10.1130/0016-7606(2002) 114<0096:CAOISO>2.0.CO;2
Saltzman, M.R. 2003. The late Paleozoic ice age; oceanic gateway or pCO2? Geology, 31, 151–154. https://doi.org/10.1130/0091-7613(2003)031<0151: LPIAOG>2.0.CO;2
Scalabrini Ortiz, J. and Arrondo, O.G. 1973. Contribución al conocimiento del Carbónico de los perfiles del cerro Veladero y del río del Piñón (Precordillera de La Rioja). Revista del Museo de La Plata, 8, 257–279.
Sterren, A.F. and Cisterna, G.A. 2010. Bivalves and brachiopods in the Carboniferous-Early Permian of Argentine Precordillera: Diversification and faunal turnover in Southwestern Gondwana. Geologica Acta, 8, 501–517. https://doi.org/10.1344/105.000001585
Sterren, A.F., Cisterna, G.A., Rustán, J.J., Vaccari, N.E. and Ezpeleta, M. 2013. Nuevos registros de invertebrados marinos en las sedimentitas Devónico– Carboníferas de la Sierra De Las Minitas, Precordillera Septentrional de La Rioja, Argentina. Ameghiniana, 56 (S), R71.
Streel, M. and Theron, J.N. 1999. The Devonian-Carboniferous boundary in South Africa and the age of the earliest episode of the Dwyka glaciation: New palynological result. Episodes, 22, 41–44, https://doi.org/10.18814/epiiugs/1999/v22i1/007
Taboada, A., Pagani, M., Pinilla, M., Tortello, F. and Taboada, C. 2019. Carboniferous deposits of northern Sierra de Tecka, central-western Patagonia, Argentina: paleontology, biostratigraphy and correlations. Andean Geology, 46, 629–669. https://doi.org/10.5027/andgeoV46n3-3143
Torsvik, T.H., Van der Voo, R. et al. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–368. https://doi.org/10.1016/j.earscirev.2012.06.007
Vaccari, N.E., Rustán, J.J., Sterren, A.F., Cisterna, G.A., Ezpeleta, M. and Balseiro, D. 2013. Primer registro de Pudoproetus (Trilobita) en el Tournaisiano de la Formación Agua de Lucho, La Rioja, Argentina: significado bioestratigráfico. Ameghiniana, 50 (S), R74.
Van Hinsbergen, D.J.J., De Groot, L.V. et al. 2015. A paleolatitude calculator for palaeoclimate studies. PLoS ONE, 10, 1–21. https://doi.org/10.1371/journal. pone.0126946
Veevers, J.J. and Powell, C.M. 1987. Late Paleozoic glacial in Gondwanaland reflected in trangressive-regressive depostional sequences in Euramerica. Geological Society of America Bulletin, 98, 475–487, https://doi.org/10.1130/0016-7606(1987)98<475:LPGEIG>2.0.CO;2
Von Gosen, W., McClelland, W.C., Loske, W., Martinez, J.C. and Prozzi, C. 2014. Geochronology of igneous rocks in the Sierra Norte de Córdoba (Argentina): Implications for the Pampean evolution at the western Gondwana margin. Lithosphere, 6, 277–300, https://doi.org/10. 1130/L344.1
Wallace, Z. and Elrick, M. 2014. Early Mississippian orbital-scale glacio-eustasy detected from high-resolution oxygen isotopes of marine apatite (Conodonts). Journal of Sedimentary Research, 84, 816–824, https://doi.org/10.2110/jsr. 2014.69
Wicander, R., Clayton, G., Marshall, J.E.A., Troth, I. and Racey, A. 2011. Was the latest Devonian glaciation a multiple event? New palynological evidence from Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology, 305, 75–83. https://doi.org/10.1016/j.palaeo.2011.02.016
Yao, L., Qie, W. et al. 2015. The TICE event: Perturbation of carbon-nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse-ice-house transition. Chemical Geology, 401, 1–14. https://doi.org/10.1016/j. chemgeo.2015.02.021
Zecchin, M., Caffau, M., Tosi, L., Civile, D., Brancolini, G., Rizzetto, F. and Roda, C. 2010. The impact of Late Quaternary glacio-eustasy and tectonics on sequence development: evidence from both uplifting and subsiding settings in Italy. Terra Nova, 22, 324–329. https://doi.org/10.1111/j.1365-3121.2010. 00953.x