Towards more intimacy: moderate elevation of temperature drives increases in foraging and mutualistic interactions between Lasius niger and Aphis fabae
[en] 1. Climate change will likely affect the association between species interacting at different trophic levels. However, studies focusing on the impact of an elevation of temperature on ant-hemipteran mutualism remain scarce. 2. In the present study we investigated, in laboratory conditions, the foraging behaviour of the ant Lasius niger and its mutualistic interaction with the aphid Aphis fabae under three conditions of temperatures (i.e. 20°C, 23°C, and 26°C), as predicted by climatic scenarios. 3. Aphids were more mobile but as likely to release honeydew droplets at higher temperatures. As regards the ants, a moderate 3°C increase of temperature positively impacted their mutualistic interaction with aphids. Such reinforcement was achieved through an increase in the walking speed of ant foragers, in the number of mobilised ants as well as in the total amount of honeydew harvested by the colony. 4. A further elevation of temperature to 26°C reduced the benefits gained by the aphid-tending ants, in terms of lower amount of collected honeydew. 5. Based on our results, we hypothesise that, in temperate regions, a moderate increase of ambient atmospheric temperature by 3°C will benefit to the L. niger - A. fabae mutualistic interaction. A more marked elevation of 6°C may represent a threshold thermal value above which a switch of partners or a disruption of the interaction may occur under the temperatures predicted for the end of the century. These results demonstrate the fragility of mutualistic interactions, and more particularly their sensitivity to temperature increases predicted by realistic forecast models.
Disciplines :
Entomology & pest control
Author, co-author :
Blanchard, Solène ; Ecologie Sociale, C.P. 231, Université Libre de Bruxelles, Bruxelles, Belgium ; Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech, TERRA, Université de Liège, Gembloux, Belgium
Van Offelen, Julie; Ecologie Sociale, C.P. 231, Université Libre de Bruxelles, Bruxelles, Belgium
Verheggen, François ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Towards more intimacy: moderate elevation of temperature drives increases in foraging and mutualistic interactions between Lasius niger and Aphis fabae
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adler, L.S., De Valpine, P., Harte, J. & Call, J. (2007) Effects of long-term experimental warming on aphid density in the field. Journal of the Kansas Entomological Society, 80, 156–168. https://doi.org/10.2317/0022-8567(2007)80[156:EOLEWO]2.0.CO;2.
Arganda, S., Nicolis, S.C., Perochain, A., Pechabadens, C., Latil, G. & Dussutour, A. (2014) Collective choice in ants: the role of protein and carbohydrates ratios. Journal of Insect Physiology, 69, 19–26. https://doi.org/10.1016/j.jinsphys.2014.04.002.
Aslan, C.E., Zavaleta, E.S., Tershy, B. & Croll, D. (2013) Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS One, 8, e66993. https://doi.org/10.1371/journal.pone.0066993.
Azcárate, F.M., Kovacs, E. & Peco, B. (2007) Microclimatic conditions regulate surface activity in harvester ants Messor barbarus. Journal of Insect Behavior, 20, 315–329. https://doi.org/10.1007/s10905-007-9074-3.
Banks, C. & Nixon, H.L. (1958) Effects of the ant, Lasius Niger L., on the feeding and excretion of the bean aphid, Aphis fabae Scop. Journal of Experimental Biology, 35, 703–711.
Barton, B.T. & Ives, A.R. (2014) Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology, 95, 1479–1484. https://doi.org/10.1890/13-1977.1.
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H. et al. (2015) Package ‘lme4’. Convergence, 12, 2.
Baudier, K.M., D'Amelio, C.L., Malhotra, R., O'Connor, M.P. & O'Donnell, S. (2018) Extreme insolation: climatic variation shapes the evolution of thermal tolerance at multiple scales. The American Naturalist, 192, 347–359. https://doi.org/10.1086/698656.
Beckers, R., Deneubourg, J.L. & Goss, S. (1992) Trails and U-turns in the selection of a path by the ant Lasius Niger. Journal of Theoretical Biology, 159, 397–415. https://doi.org/10.1016/S0022-5193(05)80686-1.
Bishop, T.R., Robertson, M.P., Van Rensburg, B.J. & Parr, C.L. (2017) Coping with the cold: minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecological Entomology, 42, 105–114. https://doi.org/10.1111/een.12364.
Blanchard S., Lognay G., Verheggen F. & Detrain C. (2019) Today and tomorrow: impact of climate change on aphid biology and potential consequences on their mutualism with ants. Physiological Entomology, 44, 77–86. http://dx.doi.org/10.1111/phen.12275.
Boullis, A., Detrain, C., Francis, F. & Verheggen, F. (2016) Will climate change affect insect pheromonal communication? Current Opinion in Insect Science, 17, 87–91. https://doi.org/10.1016/j.cois.2016.08.006.
Breton, L.M. & Addicott, J.F. (1992b) Density-dependent mutualism in an aphid-ant interaction. Ecology, 73, 2175–2180. https://doi.org/10.2307/1941465.
Brown, M.J. & Paxton, R.J. (2009) The conservation of bees: a global perspective. Apidologie, 40, 410–416. https://doi.org/10.1051/apido/2009019.
Buckley, R.C. (1987) Interactions involving plants, Homoptera, and ants. Annual Review of Ecology and Systematics, 18, 111–135.
Bujan, J. & Kaspari, M. (2017) Nutrition modifies critical thermal maximum of a dominant canopy ant. Journal of Insect Physiology, 102, 1–6. https://doi.org/10.1016/j.jinsphys.2017.08.007.
Bujan, J., Roeder, K.A., Yanoviak, S.P. & Kaspari, M. (2020) Seasonal plasticity of thermal tolerance in ants. Ecology, 101, e03051. https://doi.org/10.1002/ecy.3051.
Cammell, M.E. & Knight, J.D. (1992) Effects of climatic change on the population dynamics of crop pests. Advances in Ecological Research, Vol. 22, pp. 117–162. https://doi.org/10.1016/S0065-2504(08)60135-X.
Cerdá, X., Retana, J. & Cros, S. (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Functional Ecology, 12, 45–55. https://doi.org/10.1046/j.1365-2435.1998.00160.x.
Degen, A.A., Gersani, M., Avivi, Y. & Weisbrot, N. (1986) Honeydew intake of the weaver ant Polyrhachis simplex (hymenoptera: Formicidae) attending the aphid Chaitophorous populialbae (Homoptera: Aphididae). Insectes Sociaux, 33, 211–215. https://doi.org/10.1007/BF02224599.
Detrain, C. & Deneubourg, J.L. (2008) Collective decision and foraging patterns in ants and honeybees. Advances in Insect Physiology, 53, 123–173. https://doi.org/10.1016/S0065-2806(08)00002-7.
Detrain, C. & Prieur, J. (2014) Sensitivity and feeding efficiency of the black garden ant Lasius Niger to sugar resources. Journal of Insect Physiology, 64, 74–80. https://doi.org/10.1016/j.jinsphys.2014.03.010.
Detrain, C., Verheggen, F., Diez, L., Wathelet, B. & Haubruge, E. (2010) Aphid-ant mutualism: how honeydew sugars influence the behaviour of ant scouts. Physiological Entomology, 35, 168–174. https://doi.org/10.1111/j.1365-3032.2010.00730.x.
Detrain, C., Pereira, H. & Fourcassié, V. (2019) Differential responses to chemical cues correlate with task performance in ant foragers. Behavioral Ecology and Sociobiology, 73, 107. https://doi.org/10.1007/s00265-019-2717-5.
Devigne, C. & Detrain, C. (2002) Collective exploration and area marking in the ant Lasius Niger. Insectes Sociaux, 49, 357–362. https://doi.org/10.1007/PL00012659.
Drees, B.M., Summerlin, B. & Vinson, S.B. (2007) Foraging activity and temperature relationship for the red imported fire ant. Southwestern Entomologist, 32, 149–155. https://doi.org/10.3958/0147-1724-32.3.149.
Duke, J.A. (1981) Legume species. Handbook of Legumes of World Economic Importance, pp. 5–310. Plenum Press, New York, New York.
El-Ziady, S. & Kennedy, J.S. (1956) Beneficial effects of the common garden ant, Lasius Niger L., on the black bean aphid, Aphis fabae Scopoli. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, Vol. 31, pp. 61–65. Blackwell Publishing Ltd, Oxford, UK. https://doi.org/10.1111/j.1365-3032.1956.tb00208.x.
Fischer, M.K., Voelkl, W. & Hoffmann, K.H. (2005) Honeydew production and honeydew sugar composition of polyphagous black bean aphid, Aphis fabae (Hemiptera: Aphididae) on various host plants and implications for ant-attendance. European Journal of Entomology, 102, 155–160.
Fischer, C.Y., Lognay, G.C., Detrain, C., Heil, M., Grigorescu, A., Sabri, A. et al. (2015) Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology, 25, 223–232. https://doi.org/10.1007/s00049-015-0188-3.
Flatt, T. & Weisser, W.W. (2000) The effects of mutualistic ants on aphid life history traits. Ecology, 81, 3522–3529. https://doi.org/10.1890/00129658(2000)081[3522:TEOMAO]2.0.CO;2.
Forrest, J.R. (2017) Insect pollinators and climate change. Global Climate Change and Terrestrial Invertebrates. Chichester, West Sussex, UK: Wiley Blackwell, pp. 69–91. https://doi.org/10.1002/9781119070894.ch5.
Franklin, J., Serra-Diaz, J.M., Syphard, A.D. & Regan, H.M. (2016) Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences, 113, 3725–3734. https://doi.org/10.1073/pnas.1519911113.
Friard, O. & Gamba, M. (2016) BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7, 1325–1330. https://doi.org/10.1111/2041-210X.12584.
Gilman, R.T., Fabina, N.S., Abbott, K.C. & Rafferty, N.E. (2012) Evolution of plant–pollinator mutualisms in response to climate change. Evolutionary Applications, 5, 2–16. https://doi.org/10.1111/j.1752-4571.2011.00202.x.
Hance, T., van Baaren, J., Vernon, P. & Boivin, G. (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52, 107–126. https://doi.org/10.1146/annurev.ento.52.110405.091333.
Harrington, R., Clark, S.J., Welham, S.J., Verrier, P.J., Denholm, C.H., Hulle, M. et al. (2007) Environmental change and the phenology of European aphids. Global Change Biology, 13, 1550–1564. https://doi.org/10.1111/j.1365-2486.2007.01394.x.
Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A.L. & Totland, Ø. (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x.
Holldöbler, B. & Wilson, E.O. (1990) The Ants. Harvard University Press, Cambridge, Massachusetts.
Hosseini, A., Hosseini, M., Katayama, N. & Mehrparvar, M. (2017) Effect of ant attendance on aphid population growth and above ground biomass of the aphid's host plant. European Journal of Entomology, 114, 106. https://doi.org/10.14411/eje.2017.015.
Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent ? Trends in Ecology & Evolution, 15, 56–61. https://doi.org/10.1016/S0169-5347(99)01764-4.
Hunter, M.D. (2001) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Agricultural and Forest Entomology, 3, 153–159. https://doi.org/10.1046/j.1461-9555.2001.00108.x.
Hurlbert, A.H., Ballantyne, F. & Powell, S. (2008) Shaking a leg and hot to trot: the effects of body size and temperature on running speed in ants. Ecological Entomology, 33, 144–154. https://doi.org/10.1111/j.1365-2311.2007.00962.x.
IPCC (2007) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,Cambridge, UK.
IPCC, Intergovernmental Panel On Climate Change (2019). Special Report on Global Warming of 1.5 C (SR15).
IPCC Working Group I (2013) Climate Change 2013-The Physical Science Basis: Summary for Policymakers. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
Jamieson, M.A., Trowbridge, A.M., Raffa, K.F. & Lindroth, R.L. (2012) Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiology, 160, 1719–1727. https://doi.org/10.1104/pp.112.206524.
Jayatilaka, P., Narendra, A., Reid, S.F., Cooper, P. & Zeil, J. (2011) Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. Journal of Experimental Biology, 214, 2730–2738. https://doi.org/10.1242/jeb.053710.
Katayama N., Hembry D., Hojo M. & Suzuki N. (2013) Why do ants shift their foraging from extrafloral nectar to aphid honeydew?. Ecological Research, 28, 919–926. http://dx.doi.org/10.1007/s11284-013-1074-5.
Kiers, T.E., Palmer, T.M., Ives, A.R., Bruno, J.F. & Bronstein, J.L. (2010) Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 13, 1459–1474. https://doi.org/10.1111/j.1461-0248.2010.01538.x.
Kiss, A. (1981) Melezitose, aphids and ants. Oikos, 37, 382.
Larsen, K.J., Heady, S.E. & Nault, L.R. (1992) Influence of ants (hymenoptera: Formicidae) on honeydew excretion and escape behaviors in a myrmecophile, Dalbulus quinquenotatus (Homoptera: Cicadellidae), and its congeners. Journal of Insect Behavior, 5, 109–122. https://doi.org/10.1007/BF01049162.
Lenth, R.V. (2016) Least-squares means: the R package lsmeans. Journal of Statistical Software, 69, 1–33.
Ma, G. & Ma, C.S. (2012) Climate warming may increase aphids' dropping probabilities in response to high temperatures. Journal of Insect Physiology, 58, 1456–1462. https://doi.org/10.1007/BF01049162.
Mailleux, A.C., Deneubourg, J.L. & Detrain, C. (2003) Regulation of ants' foraging to resource productivity. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 1609–1616. https://doi.org/10.1098/rspb.2003.2398.
Marquis, M., Del Toro, I. & Pelini, S.L. (2014) Insect mutualisms buffer warming effects on multiple trophic levels. Ecology, 95, 9–13. https://doi.org/10.1890/13-0760.1.
Meehl, G.A. & Tebaldi, C. (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997. https://doi.org/10.1126/science.1098704.
Mooney, E., Davidson, B., Den Uyl, J., Mullins, M., Medina, E., Nguyen, P. et al. (2019) Elevated temperatures alter an ant-aphid mutualism. Entomologia Experimentalis et Applicata, 167, 891–905. https://doi.org/10.1111/eea.12839.
Murphy, S., Richards, L.A. & Wimp, G.M. (2020) Arthropod interactions and responses to disturbance in a changing world. Frontiers in Ecology and Evolution, 8, 93. https://doi.org/10.3389/fevo.2020.00093.
Nakai, A., Inui, Y., & Tokita, K. (2020). Facultative Predation Can Alter the Ant-Aphid Population. arXiv preprint arXiv:2004.01966.
Nelson, A.S., Pratt, R.T., Pratt, J.D., Smith, R.A., Symanski, C.T., Prenot, C. et al. (2019) Progressive sensitivity of trophic levels to warming underlies an elevational gradient in ant–aphid mutualism strength. Oikos, 128, 540–550. https://doi.org/10.1111/oik.05650.
Offenberg, J. (2001) Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behavioral Ecology and Sociobiology, 49, 304–310. https://doi.org/10.1007/s002650000303.
Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C. et al. (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science, 355, eaai9214. https://doi.org/10.1126/science.aai9214.
Pringle, E.G., Novo, A., Ableson, I., Barbehenn, R.V. & Vannette, R.L. (2014) Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants. Ecology and Evolution, 4, 4065–4079. http://dx.doi.org/10.1002/ece3.1277.
Porter, J.H., Parry, M.L. & Carter, T.R. (1991) The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology, 57, 221–240. https://doi.org/10.1016/0168-1923(91)90088-8.
Rafferty, N.E. (2017) Effects of global change on insect pollinators: multiple drivers lead to novel communities. Current Opinion in Insect Science, 23, 22–27. https://doi.org/10.1016/j.cois.2017.06.009.
Robinet, C. & Roques, A. (2010) Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5, 132–142. https://doi.org/10.1111/j.1749-4877.2010.00196.x.
Roeder, K.A., Roeder, D.V. & Kaspari, M. (2018) The role of temperature in competition and persistence of an invaded ant assemblage. Ecological Entomology, 43, 774–781. https://doi.org/10.1111/een.12663.
Sable, M.G. & Rana, D.K. (2016) Impact of global warming on insect behavior-a review. Agricultural Reviews, 37, 81–84. https://doi.org/10.18805/ar.v37i1.9270.
Sachs, J.L. & Simms, E.L. (2006) Pathways to mutualism breakdown. Trends in Ecology & Evolution, 21, 585–592. https://doi.org/10.1016/j.tree.2006.06.018.
Sagata, K. & Gibb, H. (2016) The effect of temperature increases on an ant-hemiptera-plant interaction. PLoS One, 11, e0155131. https://doi.org/10.1371/journal.pone.0155131.
Sakata, H. (1995) Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Researches on Population Ecology, 37, 159–164. https://doi.org/10.1007/BF02515816.
Schweiger, O., Biesmeijer, J.C., Bommarco, R., Hickler, T., Hulme, P.E., Klotz, S. et al. (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 85, 777–795. https://doi.org/10.1111/j.1469-185X.2010.00125.x.
Stadler, B. & Dixon, A.F.G. (1998) Costs of ant attendance for aphids. Journal of Animal Ecology, 67, 454–459.
Stadler, B. & Dixon, A.F. (2005) Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution, and Systematics, 36, 345–372. https://doi.org/10.1146/annurev.ecolsys.36.091704.175531.
Stiling, P. & Cornelissen, T. (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13, 1823–1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x.
Stuble, K.L., Pelini, S.L., Diamond, S.E., Fowler, D.A., Dunn, R.R. & Sanders, N.J. (2013) Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and Evolution, 3, 482–491. https://doi.org/10.1002/ece3.473.
Van Emden, H.F. & Harrington, R. (2007) Aphids as Crop Pests, 1st edn. CAB International, Willingford, UK.
Van Oudenhove, L., Billoir, E., Boulay, R., Bernstein, C. & Cerda, X. (2011) Temperature limits trail following behavior through pheromone decay in ants. Naturwissenschaften, 98, 1009–1017. https://doi.org/10.1007/s00114-011-0852-6.
Verheggen, F.J., Diez, L., Sablon, L., Fischer, C., Bartram, S., Haubruge, E. et al. (2012) Aphid alarm pheromone as a cue for ants to locate aphid partners. PLoS One, 7, e41841. https://doi.org/10.1371/journal.pone.0041841.
Völkl, W., Woodring, J., Fischer, M., Lorenz, M.W. & Hoffmann, K.H. (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118, 483–491. https://doi.org/10.1007/s004420050751.
Walters, A.C. & Mackay, D.A. (2004) Comparisons of upper thermal tolerances between the invasive argentine ant (hymenoptera: Formicidae) and two native Australian ant species. Annals of the Entomological Society of America, 97, 971–975. https://doi.org/10.1603/0013-8746(2004)097[0971:COUTTB]2.0.CO;2.
Walther, G.R. (2003) Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics, 6, 169–185. https://doi.org/10.1078/1433-8319-00076.
Way, M.J. (1963) Mutualism between ants and honeydew-producing Homoptera. Annual Review of Entomology, 8, 307–344.
Yao, I. (2012) Ant attendance reduces flight muscle and wing size in the aphid Tuberculatus quercicola. Biology Letters, 8, 624–627. https://doi.org/10.1098/rsbl.2012.0014.
Yao, I. & Akimoto, S.I. (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecological Entomology, 27, 745–752. https://doi.org/10.1046/j.1365-2311.2002.00455.x.
Zhou, A., Kuang, B., Gao, Y. & Liang, G. (2015) Density-dependent benefits in ant-hemipteran mutualism? The case of the ghost ant Tapinoma melanocephalum (hymenoptera: Formicidae) and the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae). PLoS One, 10, e0123885. https://doi.org/10.1371/journal.pone.0123885.
Zhou, A., Qu, X., Shan, L. & Wang, X. (2017) Temperature warming strengthens the mutualism between ghost ants and invasive mealybugs. Scientific Reports, 7, 1–10. https://doi.org/10.1038/s41598-017-01137-0.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.