Article (Scientific journals)
Magnetosphere‐Ionosphere‐Thermosphere Coupling study at Jupiter Based on Juno’s First 30 Orbits and Modeling Tools
Al Saati, S.; Clément, N.; Louis, C. et al.
2022In Journal of Geophysical Research. Space Physics
Peer Reviewed verified by ORBi
 

Files


Full Text
Al Saati - M-I Coupling Study at Jupiter.pdf
Author postprint (7.19 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Space and Planetary Science; Jupiter; aurora; Juno; current system; MIT coupling
Abstract :
[en] The dynamics of the Jovian magnetosphere is controlled by the interplay of the planet’s fast rotation, its solar-wind interaction and its main plasma source at the Io torus, mediated by coupling processes involving its magnetosphere, ionosphere, and thermosphere. At the ionospheric level, these processes can be characterized by a set of parameters including conductances, field-aligned currents, horizontal currents, electric fields, transport of charged particles along field lines including the fluxes of electrons precipitating into the upper atmosphere which trigger auroral emissions, and the particle and Joule heating power dissipation rates into the upper atmosphere. Determination of these key parameters makes it possible to estimate the net transfer of momentum and energy between Jovian upper atmosphere and equatorial magnetosphere. A method based on a combined use of Juno multi-instrument data and three modeling tools was developed by Wang et al. (2021) and applied to an analysis of the first nine orbits to retrieve these parameters along Juno’s magnetic footprint. We extend this method to the first thirty Juno science orbits and to both hemispheres. Our results reveal a large variability of these parameters from orbit to orbit and between the two hemispheres. They also show dominant trends. Southern current systems are consistent with the generation of a region of sub-corotating ionospheric plasma flows, while both super-corotating and sub-corotating plasma flows are found in the north. These results are discussed in light of the previous space and ground-based observations and currently available models of plasma convection and current systems, and their implications are assessed.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Al Saati, S. ;  IRAP CNRS Université Toulouse III‐Paul Sabatier CNES Toulouse France ; CPHT CNRS Institut Polytechnique de Paris Palaiseau France
Clément, N. ;  IRAP CNRS Université Toulouse III‐Paul Sabatier CNES Toulouse France ; Laboratoire d’Astrophysique de Bordeaux Université de Bordeaux Bordeaux France
Louis, C. ;  IRAP CNRS Université Toulouse III‐Paul Sabatier CNES Toulouse France ; School of Cosmic Physics DIAS Dunsink Observatory Dublin Institute for Advanced Studies Dublin15 Ireland
Blanc, M. ;  IRAP CNRS Université Toulouse III‐Paul Sabatier CNES Toulouse France ; LAM Pythéas Aix Marseille Université CNRS CNES Marseille France
Wang, Y. ;  State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing China
André, N. ;  IRAP CNRS Université Toulouse III‐Paul Sabatier CNES Toulouse France
Lamy, L. ;  LAM Pythéas Aix Marseille Université CNRS CNES Marseille France ; LESIA, Observatoire de Paris Université PSL CNRS Sorbonne Université Université de Paris Meudon France
Bonfond, Bertrand  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Collet, B.;  LAM Pythéas Aix Marseille Université CNRS CNES Marseille France
Allegrini, F.;  SwRI San Antonio TX USA
Bolton, S. ;  SwRI San Antonio TX USA
Clark, G. ;  JHU‐APL Laurel MD USA
Connerney, J. E. P. ;  NASA‐Goddard Space Flight Center Greenbelt MD USA
Gérard, Jean-Claude  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gladstone, G. R. ;  SwRI San Antonio TX USA
Kotsiaros, S. ;  Technical University of Denmark Kongens Lyngby Denmark
Kurth, W. S. ;  University of Iowa Iowa USA
Mauk, B. ;  JHU‐APL Laurel MD USA
More authors (8 more) Less
Language :
English
Title :
Magnetosphere‐Ionosphere‐Thermosphere Coupling study at Jupiter Based on Juno’s First 30 Orbits and Modeling Tools
Publication date :
24 September 2022
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
American Geophysical Union (AGU)
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ESA - European Space Agency
BELSPO - Belgian Science Policy Office
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 03 October 2022

Statistics


Number of views
43 (11 by ULiège)
Number of downloads
51 (3 by ULiège)

Scopus citations®
 
12
Scopus citations®
without self-citations
2
OpenCitations
 
4
OpenAlex citations
 
15

Bibliography


Similar publications



Contact ORBi