Aurorae; Infrared observations; Jupiter; Spectroscopy; Ultraviolet observations; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] Cooling of Jupiter's auroral thermosphere by H3+ radiation to space is one of the processes controlling the energy balance in the auroral upper atmosphere. The UltraViolet Spectrograph (UVS) and the Jupiter InfraRed Auroral Mapper (JIRAM) on board Juno have observed the Jovian polar aurora from its polar orbit since August 2016. The UVS instrument measures the H2 Lyman and Werner bands whose brightness is a proxy of the precipitated auroral electron flux. The 3.3–3.6 μm spectral window of the JIRAM L-band imager maps the H3+ thermal radiance with unprecedented spatial resolution. Comparison of concurrent observations indicates that the morphological features are similar in the two spectral regions but differences are also observed in the spatial intensity contrast. We compare the total (direct and indirect) particle heating rate and the cooling by H3+ radiation derived from four pairs of simultaneous UVS and JIRAM images. The total auroral cooling power H3+ is in the range 2–4 terawatts in both hemispheres. In all cases, the H3+ cooling in the aurora is found to range between 0.45 and 0.67 time less than the particle collisional heating. In a second step, we use the ultraviolet H2 brightness and FUV color ratio to derive the characteristics of the electron precipitation and model the H3+ radiance for each UVS map pixel. The comparison of the H3+ modeled radiance map with the JIRAM observations shows general good agreement with some local differences. The four spatially integrated H3+ cooling power from the model are in very good agreement with the JIRAM values. These results are important constraints for global magnetosphere-ionosphere-atmosphere models.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gkouvelis, Leonardos ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; NASA Ames Research Center, Moffet Field, California, United States
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gladstone, G.R.; Southwest Research Institute, San Antonio, United States ; Physics and Astronomy Department, University of Texas at San Antonio, United States
Mura, A.; Istituto di Astrofisica e Planetologia Spaziali-INAF, Rome, Italy
Adriani, A.; Istituto di Astrofisica e Planetologia Spaziali-INAF, Rome, Italy
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hue, V.; Southwest Research Institute, San Antonio, United States
Greathouse, T.K.; Southwest Research Institute, San Antonio, United States
Language :
English
Title :
H3+ cooling in the Jovian aurora: Juno remote sensing observations and modeling
ESA - European Space Agency BELSPO - Politique scientifique fédérale
Funding text :
B. B. is a Research Associate of the Belgian Fonds de la Recherche Scientifique-FNRS. J.C.G., B. B. and D.G. and acknowledge financial support from the Belgian Federal Science Policy Office (BELSPO) via the PRODEX Program of ESA. L.G. was supported by an appointment to the National Aeronautics and Space Administration (NASA) Postdoctoral Program at the Ames Research Center administrated by the Universities Space Research Association (USRA) through a contract with NASA. We are grateful to NASA and contributing institutions that have made the Juno mission possible. This work was funded by NASA's New Frontiers Program for Juno via contract with the Southwest Research Institute. The JIRAM instrument was supported by the Italian Space Agency through ASI-INAF contracts I/010/10/0 and 2014-050-R.0.
Achilleos, N., Miller, S., Tennyson, J., Aylward, A.D., Mueller-Wodarg, I., Rees, D., JIM: a time-dependent, three-dimensional model of Jupiter's thermosphere and ionosphere. J. Geophys. Res. Planets 103:E9 (1998), 20089–20112.
Adriani, A., Mura, A., Moriconi, M.L., Dinelli, B.M., Fabiano, F., Altieri, F., et al. Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora. Geophys. Res. Lett. 44 (2017), 4633–4640, 10.1002/2017GL072905.
Bolton, S.J., Lunine, J., Stevenson, D., Connerney, J.E.P., Levin, S., Owen, T.C., et al. The Juno mission. Space Sci. Rev. 213:1–4 (2017), 5–37.
Bonfond, B., Gladstone, G.R., Grodent, D., Greathouse, T.K., Versteeg, M.H., Hue, V., et al. Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophys. Res. Lett. 44:10 (2017), 4463–4471.
Bougher, S.W., Waite, J.H., Majeed, T., Gladstone, G.R., Jupiter Thermospheric general circulation model (JTGCM): global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res. Planets, 110, 2005, E04008.
Dinelli, B.M., Fabiano, F., Adriani, A., Altieri, F., Moriconi, M.L., Mura, A., Olivieri, A., Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophys. Res. Lett. 44:10 (2017), 4625–4632.
Drossart, P., Maillard, J.P., Caldwell, J., Kim, S.J., Watson, J.K.G., Majewski, W.A., Wagener, R., Detection of H3+ on Jupiter. Nature 340:6234 (1989), 539–541.
Gérard, J.C., Bonfond, B., Grodent, D., Radioti, A., Clarke, J.T., Gladstone, G.R., Shematovich, V.I., Mapping the electron energy in Jupiter's aurora: Hubble spectral observations. J. Geophys. Res. Space Physics 119:11 (2014), 9072–9088.
Gérard, J.C., Mura, A., Bonfond, B., Gladstone, G.R., Adriani, A., Hue, V., Levin, S.M., Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus 312 (2018), 145–156.
Gérard, J.C., Bonfond, B., Mauk, B.H., Gladstone, G.R., Yao, Z.H., Greathouse, T.K., et al. Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. J. Geophys. Res. Space Physics 124 (2019), 8298–8317, 10.1029/2019ja026862.
Gérard, J.C., Gkouvelis, L., Bonfond, B., Grodent, D., Gladstone, G.R., Hue, V., et al. Spatial distribution of the Pedersen conductance in the Jovian aurora from Juno-UVS spectral images. J. Geophys. Res., 125, 2020, e2020JA028142, 10.1029/2020JA028142.
Gladstone, G.R., Persyn, S.C., Eterno, J.S., Walther, B.C., Slater, D.C., Davis, M.W., Denis, F., The ultraviolet spectrograph on NASA's Juno mission. Space Sci. Rev. 213:1 (2017), 447–473.
Grodent, D., Waite, J.H. Jr., Gérard, J.C., A self-consistent model of the Jovian auroral thermal structure. J. Geophys. Res. Space Physics 106:A7 (2001), 12933–12952.
Hiraki, Y., Tao, C., Parameterization of ionization rate by auroral electron precipitation in Jupiter. Ann. Geophys. 26 (2008), 77–86, 10.5194/angeo-26-77-2008.
Hue, V., Gladstone, G.R., Greathouse, T.K., Kammer, J.A., Davis, M.W., Bonfond, B., Byron, B.D., In-flight characterization and calibration of the Juno-ultraviolet spectrograph (Juno-UVS). Astron. J., 157(2), 2019, 90.
Hue, V. Rohini, Giles, S., Gladstone, George R., Greathouse, Thomas K., Davis, Michael W., Kammer, Joshua A., Versteeg, Maarten H., Updated radiometric and wavelength calibration of the Juno ultraviolet spectrograph. J. Astron. Telesc. Instrum. Syst., 7(4), 2021, 044003, 10.1117/1.JATIS.7.4.044003.
Johnson, R.E., Melin, H., Stallard, T.S., Tao, C., Nichols, J.D., Chowdhury, M.N., Mapping H3+ temperatures in Jupiter's northern Auroral ionosphere using VLT-CRIRES. J. Geophys. Res. Space Physics 123:7 (2018), 5990–6008.
Lam, H.A., Achilleos, N., Miller, S., Tennyson, J., Trafton, L.M., Geballe, T.R., Ballester, G.E., A baseline spectroscopic study of the infrared aurorae of Jupiter. Icarus 127 (1997), 379–393.
Majeed, T., Waite, J.H., Bougher, S.W., Gladstone, G.R., Processes of auroral thermal structure at Jupiter: analysis of multispectral temperature observations with the Jupiter thermosphere general circulation model. J. Geophys. Res. Planets, 114(E7), 2009.
Melin, H., Miller, S., Stallard, T., Smith, C., Grodent, D., Energy balance in the Jovian atmosphere during an auroral heating event. Icarus 181 (2006), 256–265.
Migliorini, A., Dinelli, B.M., Moriconi, M.L., Altieri, F., Adriani, A., Mura, A., Plainaki, C., H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus 329 (2019), 132–139.
Miller, S., Stallard, T., Tennyson, J., Melin, H., Cooling by H3+ emission. J. Phys. Chem. 117 (2013), 9770–9777.
Millward, G., Miller, S., Stallard, T., Aylward, A.D., Achilleos, N., On the dynamics of the Jovian ionosphere and thermosphere III. The modelling of auroral conductivity. Icarus 160 (2002), 95–107, 10.1006/icar.2002.6951.
Millward, G., Miller, S., Stallard, T., Achilleos, N., Aylward, A.D., On the dynamics of the Jovian ionosphere and thermosphere. IV. Ion-neutral coupling. Icarus 173 (2005), 200–211, 10.1016/j.icarus.2004.07.027.
Moore, L., O'Donoghue, J., Melin, H., Stallard, T., Tao, C., Zieger, B., Bolton, S., Variability of Jupiter's IR H3+ aurorae during Juno approach. Geophys. Res. Lett. 44:10 (2017), 4513–4522.
Mura, A., Adriani, A., Altieri, F., Connerney, J.E.P., Bolton, S.J., Moriconi, M.L., Olivieri, A., Infrared observations of Jovian aurora from Juno's first orbits: main oval and satellite footprints. Geophys. Res. Lett. 44:11 (2017), 5308–5316.
Mura, A., Adriani, A., Connerney, J.E.P., Bolton, S., Altieri, F., Bagenal, F., Turrini, D., Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science 361:6404 (2018), 774–777.
O'Donoghue, J., Moore, L., Bhakyapaibul, T., Melin, H., Stallard, T., Connerney, J.E.P., Tao, C., Global upper-atmospheric heating on Jupiter by the polar aurorae. Nature 596:7870 (2021), 54–55.
Radioti, A., Lystrup, M., Bonfond, B., Grodent, D., Gérard, J.C., Jupiter's aurora in ultraviolet and infrared: simultaneous observations with the Hubble space telescope and the NASA infrared telescope facility. J. Geophys. Res. Space Physics 118:5 (2013), 2286–2295.
Raynaud, E., Lellouch, E., Maillard, J.P., Gladstone, G.R., Waite, J.H. Jr., Bézard, B., Fouchet, T., Spectro-imaging observations of Jupiter's 2-μm auroral emission. I. H3+ distribution and temperature. Icarus 171:1 (2004), 133–152.
Stallard, T., Miller, S., Millward, G., Joseph, R.D., On the dynamics of the Jovian ionosphere and thermosphere: II. The measurement of H3+ vibrational temperature, column density, and total emission. Icarus 156:2 (2002), 498–514.
Waite, J.H., Cravens, T.E., Kozyra, J., Nagy, A.F., Atreya, S.K., Chen, R.H., Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res. Space Physics 88 (1983), 6143–6163.
Yates, J.N., Ray, L.C., Achilleos, N., Witasse, O., Altobelli, N., Magnetosphere– ionosphere–thermosphere coupling at Jupiter using a three-dimensional atmospheric general circulation model. J. Geophys. Res. Space Physics, 125, 2020, e2019JA026792, 10.1029/2019JA026792.
Yung, Y.L., Gladstone, G.R., Chang, K.M., Ajello, J.M., Srivastava, S.K., H2 fluorescence spectrum from 1200 to 1700 a by electron impact - laboratory study and application to Jovian aurora. Astrophys. J. Lett. 254 (1982), L65–L69, 10.1086/183757.