[en] Dogs have a powerful olfactory system, which is used in many areas of the police and military to detect drugs, human remains, and explosives, among other items. Despite these powerful detection abilities, methods assessing the performance (MAP) of dogs remain scarce, and have never been validated. In particular, scientific knowledge on post-training performance assessments is scarce. To validate a quantitative MAP, an efficient detection dog (DD) must first be defined. Here, we aimed to define what an efficient DD is, and to develop a quantitative MAP. Specifically, we conducted 1) an international survey sent to professional DD practitioners (n = 50), and 2) an experimental assay on cadaver and drug DDs (n = 20). Based on the survey, efficient DDs were defined as confident animals, making few mistakes, alerting to the presence of target odors as close as possible, able to strategically screen the search area effectively, independent and not easily distracted. The developed quantitative MAP was based on video tracking DDs in a circular behavioral arena, in which the error rate of DD was recorded, including accuracy and the strategy level. Previous studies have already demonstrated that DDs are usually confidant. Guidance was not assessed during MAP development; however, handlers could not guide DDs during the search session. Based on this method, future studies should evaluate DD performance throughout the entire training process. Such monitoring would allow thresholds to be determined, allowing efficient DDs to be identified, along with the effect of certain factors on performance (e.g., dogs breed, gender, and training aids used during DD conditioning).
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Martin, Clément ; Université de Liège - ULiège > TERRA Research Centre
Willem, Noémie; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
Desablens, Sorenza; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
Menard, Vincent; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
Tajri, Sophia ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Blanchard, Solène ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Brostaux, Yves ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Verheggen, François ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Diederich, Claire; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium ; CORRESPONDENCE Claire Diederich
Language :
English
Title :
What a good boy! Deciphering the efficiency of detection dogs
Alexander M. B. Hodges T. K. Bytheway J. Aitkenhead-Peterson J. A. (2015). Application of soil in forensic science: residual odor and HRD dogs. Forensic Sci. Int. 249, 304–313. 10.1016/j.forsciint.2015.01.025
Angle T. C. Passler T. Waggoner P. L. Fischer T. D. Rogers B. Galik P. K. et al. (2016). Real-time detection of a virus using detection dogs. Front. Vet. Sci. 2, 79. 10.3389/fvets.2015.00079
Beebe S. C. Howell T. J. Bennett P. C. (2016). Using scent detection dogs in conservation settings: a review of scientific literature regarding their selection. Front. Vet. Sci. 3, 96. 10.3389/fvets.2016.00096
Bennett E. M. Hauser C. E. Moore J. L. (2020). Evaluating conservation dogs in the search for rare species. Conserv. Biol. 34 (2), 314–325. 10.1111/cobi.13431
Blackwell E. J. Twells C. Seawright A. Casey R. A. (2008). The relationship between training methods and the occurrence of behavior problems, as reported by owners, in a population of domestic dogs. J. Vet. Behav. 3 (5), 207–217. 10.1016/j.jveb.2007.10.008
Brady K. Cracknell N. Zulch H. Mills D. S. (2018). Factors associated with long-term success in working police dogs. Appl. Animal Behav. Sci. 207, 67–72. 10.1016/j.applanim.2018.07.003
Cablk M. E. Sagebiel J. C. (2011). Field capability of dogs to locate individual human teeth. J. Forensic Sci. 56 (4), 1018–1024. 10.1111/j.1556-4029.2011.01785.x
Concha A. Mills D. S. Feugier A. Zulch H. Guest C. Harris R. et al. (2014). Using sniffing behavior to differentiate true negative from false negative responses in trained scent-detection dogs. Chem. Senses 39 (9), 749–754. 10.1093/chemse/bju045
Curran A. M. Prada P. A. Furton K. G. (2010). Canine human scent identifications with post-blast debris collected from improvised explosive devices. Forensic Sci. Int. 199 (1–3), 103–108. 10.1016/j.forsciint.2010.03.021
Dickey T. Junqueira H. (2021). Toward the use of medical scent detection dogs for COVID-19 screening. J. Osteopath. Med. 121 (2), 141–148. 10.1515/jom-2020-0222
Dolédec S. Chessel D. (1994). Co-inertia analysis: an alternative method for studying species–environment relationships. Freshw. Biol. 31 (3), 277–294. 10.1111/J.1365-2427.1994.TB01741.X
Fratkin J. L. Sinn D. L. Scott T. Stewart H. Olson Z. Gosling S. D. (2015). Do you see what I see? Can non-experts with minimal training reproduce expert ratings in behavioral assessments of working dogs? Behav. Process. 110, 105–116. 10.1016/j.beproc.2014.09.028
Gazit I. Joseph T. (2003). Explosives detection by sniffer dogs following strenuous physical activity. Appl. Animal Behav. Sci. 81 (2), 149–161. 10.1016/S0168-1591(02)00274-5
Greatbatch I. Gosling R. J. Allen. S. (2015). Quantifying search dog effectiveness in a terrestrial search and rescue environment. Wilderness Environ. Med. 26 (3), 327–334. 10.1016/j.wem.2015.02.009
Hackner K. Pleil J. (2017). Canine olfaction as an alternative to analytical instruments for disease diagnosis: understanding ‘dog personality’ to achieve reproducible results. J. Breath. Res. 11 (1), 012001. 10.1088/1752-7163/aa5524
Hare B. Morgan F. (2021). Is cognition the secret to working dog success? Anim. Cogn. 24 (231), 231–237. 10.1007/s10071-021-01491-7
Harper R. J. Furton K. G. (2007). “Biological detection of explosives,” in Counterterrorist detection techniques of explosives. Editor Yinon J. (Elsevier Science B.V), 395–431. 10.1016/B978-044452204-7/50032-8
Hayes J. E. E. McGreevy P. D. D. Forbes S. L. L. Laing G. Stuetz R. M. M. (2018). Critical review of dog detection and the influences of physiology, training, and analytical methodologies. Talanta 185, 499–512. 10.1016/j.talanta.2018.04.010
Hiby E. F. Rooney N. J. Bradshaw J. W. S. (2004). Dog training methods: their use, effectiveness and interaction with behaviour and welfare. Anim. Welf. 13 (1), 63–69.
Hussein A. K. Sullivan M. Penderis J. (2012). Effect of brachycephalic, mesaticephalic, and dolichocephalic head conformations on olfactory bulb angle and orientation in dogs as determined by use of in vivo magnetic resonance imaging. Am. J. Vet. Res. 73 (7), 946–951. 10.2460/ajvr.73.7.946
Jamieson L. T. J. Baxter G. S. Murray P. J. (2017). Identifying suitable detection dogs. Appl. Animal Behav. Sci. 195, 1–7. 10.1016/j.applanim.2017.06.010
Jezierski T. Adamkiewicz E. Walczak M. Sobczyńska M. Górecka-Bruzda A. Ensminger J. et al. (2014). Efficacy of drug detection by fully-trained police dogs varies by breed, training level, type of drug and search environment. Forensic Sci. Int. 237, 112–118. 10.1016/j.forsciint.2014.01.013
Johnen D. Heuwieser W. Fischer-Tenhagen C. (2013). Canine scent detection-fact or fiction? Appl. Animal Behav. Sci. 148 (3–4), 201–208. 10.1016/j.applanim.2013.09.002
Lazarowski L. Paul Waggoner L. Krichbaum S. Singletary M. Haney P. Rogers B. et al. (2020). Selecting dogs for explosives detection: behavioral characteristics. Front. Vet. Sci. 7, 597. 10.3389/fvets.2020.00597
Lazarowski L. Rogers B. Waggoner L. P. Katz J. S. (2019). When the nose Knows: ontogenetic changes in detection dogs’ (Canis familiaris) responsiveness to social and olfactory cues. Anim. Behav. 153, 61–68. 10.1016/j.anbehav.2019.05.002
Lit L. Crawford C. A. (2006). Effects of training paradigms on search dog performance. Appl. Animal Behav. Sci. 98 (3–4), 277–292. 10.1016/j.applanim.2005.08.022
Martin C. Diederich C. Verheggen C. (2020). Cadaver dogs and the deathly hallows — a survey and literature review on selection and training procedure. Animals 10 (1219), E1219. 10.3390/ani10071219
Meester R. H. D. De Bacquer D. Peremans K. Simon V. Planta D. J. Coopman F. et al. (2008). A preliminary study on the use of the socially acceptable behavior test as a test for shyness/confidence in the temperament of dogs. J. Vet. Behav. 3 (4), 161–170. 10.1016/j.jveb.2007.10.005
Oksanen J. Blanchet F. G. Friendly M. Kindt R. Legendre P. Mcglinn D. et al. (2017). Package vegan: community ecology package. R Package Version 2.0-7.
Polgár Z. Kinnunen M. Ujváry D. Miklósi A. Gácsi M. Újváry D. et al. (2016). A test of canine olfactory capacity: comparing various dog breeds and wolves in a natural detection task. PLoS One 11 (5), e0154087. 10.1371/journal.pone.0154087
Porritt F. Mansson R. Berry A. Cook N. Sibbald N. Steve N. (2015). Validation of a short odour discrimination test for working dogs. Appl. Animal Behav. Sci. 165, 133–142. 10.1016/j.applanim.2014.11.021
Quignon P. Rimbault M. Robin S. Galibert F. (2012). Genetics of canine olfaction and receptor diversity. Mamm. Genome 23 (1–2), 132–143. 10.1007/s00335-011-9371-1
Rice S. Koziel J. A. (2015). The relationship between chemical concentration and odor activity value explains the inconsistency in making a comprehensive surrogate scent training tool representative of illicit drugs. Forensic Sci. Int. 257, 257–270. 10.1016/j.forsciint.2015.08.027
Robert P. Escoufier Y. (1976). A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl. Stat. 25 (3), 257–265. 10.2307/2347233
Rooney N. Gaines S. Hiby E. (2009). A practitioner’s guide to working dog welfare. J. Vet. Behav. 4 (3), 127–134. 10.1016/j.jveb.2008.10.037
Sebeok T. A. Rosenthal R. (1981). The clever Hans phenomenon: communication with horses, whales, apes, and people. Ann. N. Y. Acad. Sci. 47, 1–309.
Simon A. Lazarowski L. Singletary M. Barrow J. Arsdale K. V. Angle T. et al. (2020). A review of the types of training aids used for canine detection training. Front. Vet. Sci. 7, 313. 10.3389/fvets.2020.00313
Sinn D. L. Gosling S. D. Stewart H. (2010). Personality and performance in military working dogs: reliability and predictive validity of behavioral tests. Appl. Animal Behav. Sci. 127 (1–2), 51–65. 10.1016/j.applanim.2010.08.007
Stadler S. Stefanuto P.-H. Byer J. D. Brokl M. Forbes S. L. Focant J.-F. (2012). Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. J. Chromatogr. A 1255, 202–206. 10.1016/j.chroma.2012.04.001
Thrailkill E. A. Porritt F. Kacelnik A. Bouton M. E. (2018). Maintaining performance in searching dogs: Evidence from a rat model that training to detect a second (irrelevant) stimulus can maintain search and detection responding. Behav. Process. 157, 161–170. 10.1016/j.beproc.2018.09.012
Tipple C. A. Caldwell P. T. Kile B. M. Beussman D. J. Rushing B. Mitchell N. J. et al. (2014). Comprehensive characterization of commercially available canine training aids. Forensic Sci. Int. 242, 242–254. 10.1016/j.forsciint.2014.06.033