Rapid Initial Morphospace Expansion and Delayed Morphological Disparity Peak in the First 100 Million Years of the Archosauromorph Evolutionary Radiation
Foth, Christian; Sookias, Roland; Ezcurra, Martín D.
adaptive radiation; Archosauria; Archosauromorpha; disparity; early Mesozoic; evolutionary rates; geometric morphometrics; Adaptive radiation; Anatomical regions; Evolutionary radiations; Evolutionary rate; Geometric morphometric; Geometric morphometrics; Nearest neighbor distance; Phylogenetic information; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Adaptive radiations have played a major role in generating modern and deep-time biodiversity. The Triassic radiation of the Archosauromorpha was one of the most spectacular vertebrate radiations, giving rise to many highly ecomorphologically varied lineages—including the dinosaurs, pterosaurs, and stem-crocodylians—that dominated the larger-bodied land fauna for the following 150 Ma, and ultimately gave rise to today’s > 10,000 species of birds and crocodylians. This radiation provides an outstanding testbed for hypotheses relating to adaptive radiations more broadly. Recent studies have started to characterize the tempo and mode of the archosauromorph early adaptive radiation, indicating very high initial rates of evolution, non-competitive niche-filling processes, and previously unrecognized morphological disparity even among non-crown taxa. However, these analyses rested primarily either on discrete characters or on geometric morphometrics of the cranium only, or even failed to fully include phylogenetic information. Here we expand previous 2D geometric morphometric cranial datasets to include new taxa and reconstructions, and create an analogous dataset of the pelvis, thereby allowing comparison of anatomical regions and the transition from “sprawling” to “upright” posture to be examined. We estimated morphological disparity and evolutionary rates through time. All sampled clades showed a delayed disparity peak for sum of variances and average nearest neighbor distances in both the cranium and pelvis, with disparity likely not saturated by the end of the studied time span (Late Jurassic); this contrasts with smaller radiations, but lends weight to similar results for large, ecomorphologically-varied groups. We find lower variations in pelvic than cranial disparity among Triassic-Jurassic archosaurs, which may be related to greater morphofunctional constraints on the pelvis. Contrasting with some previous work, but also confirming some previous findings during adaptive radiations, we find relatively widespread evidence of correlation between sampled diversity and disparity, especially at the largest phylogenetic scales and using average displacement rather than sum of variances as disparity metric; this also demonstrates the importance of comparing disparity metrics, and the importance of phylogenetic scale. Stem and crown archosauromorphs show a morphological diversification of both the cranium and pelvis with higher initial rates (Permian–Middle Triassic and at the base of major clades) followed by lower rates once diversification into niches has occurred (Late Triassic–Jurassic), indicating an “early burst” pattern sensu lato. Our results provide a more detailed and comprehensive picture of the early archosauromorph radiation and have significant bearing on the understanding of deep-time adaptive radiations more broadly, indicating widespread patterns of delayed disparity peaks, initial correlation of diversity and disparity, and evolutionary early bursts.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Foth, Christian; Department of Geosciences, University of Fribourg, Fribourg, Switzerland ; State Museum of Natural History Stuttgart, Stuttgart, Germany
Sookias, Roland ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab ; Department of Earth Sciences, University of Oxford, Oxford, United Kingdom ; Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany
Ezcurra, Martín D.; Sección Paleontología de Vertebrados, CONICET−Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina ; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
Language :
English
Title :
Rapid Initial Morphospace Expansion and Delayed Morphological Disparity Peak in the First 100 Million Years of the Archosauromorph Evolutionary Radiation
SNF - Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung DFG - Deutsche Forschungsgemeinschaft ERC - European Research Council AvH - Alexander von Humboldt-Stiftung ANPCyT - Agencia Nacional de Promoción Científica y Tecnológica
Funding text :
This research was supported by the Swiss National Science Foundation (PZ00P2_174040 to CF), the German Science Foundation (FO 1005/ 2-1 to CF) and the Agencia Nacional de Promoción Científica y Técnica (PICT 2018-01186 to MDE). During completion of the work, RBS was supported by a Research Fellowship from the Alexander von Humboldt Foundation, by a European Research Council Starting Grant (TEMPO: ERC-2015-STG) to Roger Benson (University of Oxford), and by a position as Chargé de Recherches from the Fonds de la Recherche Scientifique (Wallonia).
Abzhanov A., (2010). Darwin's Galápagos Finches in Modern Biology. Phil. Trans. R. Soc. B 365, 1001–1007. 10.1098/rstb.2009.0321
Alhajeri B. H., Schenk J. J., Steppan S. J., (2016). Ecomorphological Diversification Following continental Colonization in Muroid Rodents (Rodentia: Muroidea). Biol. J. Linn. Soc. 117, 463–481. 10.1111/bij.12695
Anderson P. S. L., Friedman M., (2012). Using Cladistic Characters to Predict Functional Variety: Experiments Using Early Gnathostomes. J. Vertebr. Paleontol. 32, 1254–1270. 10.1080/02724634.2012.694386
Andres B., Clark J., Xu X., (2014). The Earliest Pterodactyloid and the Origin of the Group. Curr. Biol. 24, 1011–1016. 10.1016/j.cub.2014.03.030
Bapst D. W., (2013). A Stochastic Rate-Calibrated Method for Time-Scaling Phylogenies of Fossil Taxa. Methods Ecol. Evol. 4, 724–733. 10.1111/2041-210x.12081
Bapst D. W., (2014). Assessing the Effect of Time-Scaling Methods on Phylogeny-Based Analyses in the Fossil Record. Paleobiology 40, 331–351. 10.1666/13033
Bapst D. W., Bullock P. C., Melchin M. J., Sheets H. D., Mitchell C. E., (2012). Graptoloid Diversity and Disparity Became Decoupled during the Ordovician Mass Extinction. Proc. Natl. Acad. Sci. 109, 3428–3433. 10.1073/pnas.1113870109
Bapst D. W., (2012). Paleotree: an R Package for Paleontological and Phylogenetic Analyses of Evolution. Methods Ecol. Evol. 3, 803–807. 10.1111/j.2041-210x.2012.00223.x
Baron M. G., (2019). Pisanosaurus Mertii and the Triassic Ornithischian Crisis: Could Phylogeny Offer a Solution? Hist. Biol. 31, 967–981. 10.1080/08912963.2017.1410705
Barrett P. M., Butler R. J., Nesbitt S. J., (2011). The Roles of Herbivory and Omnivory in Early dinosaur Evolution. Earth Environ. Sci. Trans. R. Soc. Edinb. 101, 383–396. 10.1017/s1755691011020111
Barrett P. M., (2014). Paleobiology of Herbivorous Dinosaurs. Annu. Rev. Earth Planet. Sci. 42, 207–230. 10.1146/annurev-earth-042711-105515
Barrett P., Rayfield E., (2006). Ecological and Evolutionary Implications of dinosaur Feeding Behaviour. Trends Ecol. Evol. 21, 217–224. 10.1016/j.tree.2006.01.002
Bartoń K., (2018). MuMIn: Multi‐model Inference. R package version 1.40.4. http://cran.r-project.org/package=MuMIn.
Benson R. B., Frigot R. A., Goswami A., Andres B., Butler R. J., (2014). Competition and Constraint Drove Cope's Rule in the Evolution of Giant Flying Reptiles. Nat. Commun. 5, 3567–3568. 10.1038/ncomms4567
Benson R. B. J., Evans M., Druckenmiller P. S., (2012). High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic Boundary. PLoS ONE 7, e31838. 10.1371/journal.pone.0031838
Benton M. J., (1983). Dinosaur success in the Triassic: a Noncompetitive Ecological Model. Q. Rev. Biol. 58, 29–55. 10.1086/413056
Benton M. J., Forth J., Langer M. C., (2014). Models for the Rise of the Dinosaurs. Curr. Biol. 24, R87–R95. 10.1016/j.cub.2013.11.063
Benton M. J., (2003). When Life Nearly Died: The Greatest Mass Extinction of All Time. London: Thames & Hudson.
Benton M. J., Walker A. D., (2002). Erpetosuchus, a Crocodile-like Basal Archosaur from the Late Triassic of Elgin, Scotland. Zool. J. Linn. Soc. 136, 25–47. 10.1046/j.1096-3642.2002.00024.x
Bernhardt P., (2000). Convergent Evolution and Adaptive Radiation of Beetle-Pollinated Angiosperms. Plant Syst. Evol. 222, 293–320. 10.1007/978-3-7091-6306-1_16
Bestwick J., Unwin D. M., Butler R. J., Henderson D. M., Purnell M. A., (2018). Pterosaur Dietary Hypotheses: a Review of Ideas and Approaches. Biol. Rev. 93, 2021–2048. 10.1111/brv.12431
Bird Life International (2020). Species Factsheet: Mellisuga Helenae. Downloaded from: http://www.birdlife.org on August13,, 2020.
Blomberg S. P., Garland T., Jr. (2002). Tempo and Mode in Evolution: Phylogenetic Inertia, Adaptation and Comparative Methods. J. Evol. Biol. 15, 899–910. 10.1046/j.1420-9101.2002.00472.x
Bookstein F. L., (1997). Landmark Methods for Forms without Landmarks: Morphometrics of Group Differences in Outline Shape. Med. Image Anal. 1, 225–243. 10.1016/s1361-8415(97)85012-8
Bookstein F. L., (1991). Morphometric Tools for Landmark Data. Cambridge: Cambridge University Press.
Bookstein F., Schäfer K., Prossinger H., Seidler H., Fieder M., Stringer C., et al. (1999). Comparing Frontal Cranial Profiles in Archaic and modernHomo by Morphometric Analysis. Anat. Rec. 257, 217–224. 10.1002/(sici)1097-0185(19991215)257:6<217::aid-ar7>3.0.co;2-w
Briggs D. E. G., Fortey R. A., Wills M. A., (1992). Morphological Disparity in the Cambrian. Science 256, 1670–1673. 10.1126/science.256.5064.1670
Bronzati M., Montefeltro F. C., Langer M. C., (2015). Diversification Events and the Effects of Mass Extinctions on Crocodyliformes Evolutionary History. R. Soc. Open Sci. 2, 140385. 10.1098/rsos.140385
Brusatte S. L., Benton M. J., Ruta M., Lloyd G. T., (2008a). Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs. Science 321, 1485–1488. 10.1126/science.1161833
Brusatte S. L., Benton M. J., Ruta M., Lloyd G. T., (2008b). The First 50 Myr of dinosaur Evolution: Macroevolutionary Pattern and Morphological Disparity. Biol. Lett. 4, 733–736. 10.1098/rsbl.2008.0441
Brusatte S. L., Montanari S., Yi H.-y., Norell M. A., (2011). Phylogenetic Corrections for Morphological Disparity Analysis: New Methodology and Case Studies. Paleobiology 37, 1–22. 10.1666/09057.1
Brusatte S. L., Nesbitt S. J., Irmis R. B., Butler R. J., Benton M. J., Norell M. A., (2010). The Origin and Early Radiation of Dinosaurs. Earth-Science Rev. 101, 68–100. 10.1016/j.earscirev.2010.04.001
Butler M. A., King A. A., (2004). Phylogenetic Comparative Analysis: a Modeling Approach for Adaptive Evolution. The Am. Naturalist 164, 683–695. 10.2307/3473229
Butler R. J., Brusatte S. L., Andres B., Benson R. B. J., (2012). How Do Geological Sampling Biases Affect Studies of Morphological Evolution in Deep Time? A Case Study of Pterosaur (Reptilia: Archosauria) Disparity. Evolution 66, 147–162. 10.1111/j.1558-5646.2011.01415.x
Butler R. J., Brusatte S. L., Reich M., Nesbitt S. J., Schoch R. R., Hornung J. J., (2011). The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation. PLoS One 6, e25693. 10.1371/journal.pone.0025693
Butler R. J., Jones A. S., Buffetaut E., Mandl G. W., Scheyer T. M., Schultz O., (2019a). Description and Phylogenetic Placement of a New marine Species of Phytosaur (Archosauriformes: Phytosauria) from the Late Triassic of Austria. Zool. J. Linn. Soc. 187, 198–228. 10.1093/zoolinnean/zlz014
Butler R. J., Sennikov A. G., Dunne E. M., Ezcurra M. D., Hedrick B. P., Maidment S. C. R., et al. (2019b). Cranial Anatomy and Taxonomy of the Erythrosuchid Archosauriform 'Vjushkovia Triplicostata' Huene, 1960, from the Early Triassic of European Russia. R. Soc. Open Sci. 6, 191289. 10.1098/rsos.191289
Cantalapiedra J. L., Prado J. L., Hernández Fernández M., Alberdi M. T., (2017). Decoupled Ecomorphological Evolution and Diversification in Neogene-Quaternary Horses. Science 355, 627–630. 10.1126/science.aag1772
Carrano M. T., (1999). What, if Anything, Is a Cursor? Categories versus Continua for Determining Locomotor Habit in Mammals and Dinosaurs. J. Zoolog. 247, 29–42. 10.1111/j.1469-7998.1999.tb00190.x
Carpenter K., DiCroce T., Kinneer B., Simon R., (2013). Pelvis of Gargoyleosaurus (Dinosauria: Ankylosauria) and the Origin and Evolution of the Ankylosaur Pelvis. PLoS One 8, e79887. 10.1371/journal.pone.0079887
Castiglione S., Serio C., Tamagnini D., Melchionna M., Mondanaro A., Di Febbraro M., et al. (2019). A New, Fast Method to Search for Morphological Convergence with Shape Data. PLoS One 14, e0226949. 10.1371/journal.pone.0226949
Castiglione S., Tesone G., Piccolo M., Melchionna M., Mondanaro A., Serio C., et al. (2018). A New Method for Testing Evolutionary Rate Variation and Shifts in Phenotypic Evolution. Methods Ecol. Evol. 9, 974–983. 10.1111/2041-210x.12954
Cavin L., Forey P. L., (2007). Using Ghost Lineages to Identify Diversification Events in the Fossil Record. Biol. Lett. 3, 201–204. 10.1098/rsbl.2006.0602
Chivers D. J., Hladik C. M., (1980). Morphology of the Gastrointestinal Tract in Primates: Comparisons with Other Mammals in Relation to Diet. J. Morphol. 166, 337–386. 10.1002/jmor.1051660306
Clarke M., Thomas G. H., Freckleton R. P., (2017). Trait Evolution in Adaptive Radiations: Modeling and Measuring Interspecific Competition on Phylogenies. Am. Naturalist 189, 121–137. 10.1086/689819
Close R. A., Friedman M., Lloyd G. T., Benson R. B., (2015). Evidence for a Mid-jurassic Adaptive Radiation in Mammals. Curr. Biol. 25, 2137–2142. 10.1016/j.cub.2015.06.047
Cooney C. R., Bright J. A., Capp E. J. R., Chira A. M., Hughes E. C., Moody C. J. A., et al. (2017). Mega-evolutionary Dynamics of the Adaptive Radiation of Birds. Nature 542, 344–347. 10.1038/nature21074
de Vita J., (1979). Niche Separation and the Broken-Stick Model. Am. Naturalist 114, 171–178. 10.1086/283466
Desojo J. B., Fiorelli L. E., Ezcurra M. D., Martinelli A. G., Ramezani J., Da Rosa Á. A. S., et al. (2020). The Late Triassic Ischigualasto Formation at Cerro Las Lajas (La Rioja, Argentina): Fossil Tetrapods, High-Resolution Chronostratigraphy, and Faunal Correlations. Sci. Rep. 10, 12782. 10.1038/s41598-020-67854-1
Desojo J. B., Heckert A. B., Martz J. W., Parker W. G., Schoch R. R., Small B. J., et al. (2013). Aetosauria: a Clade of Armoured Pseudosuchians from the Upper Triassic continental Beds. Geol. Soc. Lond. Spec. Publications 379, 203–239. 10.1144/sp379.17
Dzik J., Sulej T., (2016). An Early Late Triassic Long-Necked Reptile with a Bony Pectoral Shield and Gracile Appendages. Acta Palaeontol. Pol. 61, 805–823.
Eldredge N., Gould S. J., (1972). “Punctuated Equilibria: an Alternative to Phyletic Gradualism,” in Models in Paleobiology. Editor Schopf T. J. M., (San Francisco: Freeman, Cooper & Co), 82–115.
Erwin D. H., (2007). Disparity: Morphological Pattern and Developmental Context. Palaeontology 50, 57–73. 10.1111/j.1475-4983.2006.00614.x
Estes S., Arnold S. J., (2007). Resolving the Paradox of Stasis: Models with Stabilizing Selection Explain Evolutionary Divergence on All Timescales. Am. Naturalist 169, 227–244. 10.1086/510633
Ezcurra M. D., Butler R. J., (2018). The Rise of the Ruling Reptiles and Ecosystem Recovery from the Permo-Triassic Mass Extinction. Proc. R. Soc. B. 285, 20180361. 10.1098/rspb.2018.0361
Ezcurra M. D., Jones A. S., Gentil A. R., Butler R. J., (2021a). “Early Archosauromorphs: The Crocodile and Dinosaur Precursors,” in Encyclopedia of Geology. Editors Alderton D., Elias S. A.. 2nd edition (United Kingdom: Academic Press), Vol. 4, 175–185. 10.1016/b978-0-12-409548-9.12439-x
Ezcurra M. D., Montefeltro F. C., Butler R. J., (2016). The Early Evolution of Rhynchosaurs. Front. Ecol. Evol. 3, 1–23. 10.3389/fevo.2015.00142
Ezcurra M. D., Montefeltro F. C., Pinheiro F. L., Trotteyn M. J., Gentil A. R., Lehmann O. E. R., et al. (2021b). The Stem-Archosaur Evolutionary Radiation in South America. J. South Am. Earth Sci. 105, 102935. 10.1016/j.jsames.2020.102935
Ezcurra M. D., Nesbitt S. J., Bronzati M., Dalla Vecchia F. M., Agnolin F. L., Benson R. B. J., et al. (2020). Enigmatic dinosaur Precursors Bridge the gap to the Origin of Pterosauria. Nature 588, 445–449. 10.1038/s41586-020-3011-4
Ezcurra M. D., Scheyer T. M., Butler R. J., (2014). The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence. PLoS One 9, e89165. 10.1371/journal.pone.0089165
Ezcurra M. D., (2016). The Phylogenetic Relationships of Basal Archosauromorphs, with an Emphasis on the Systematics of Proterosuchian Archosauriforms. PeerJ 4, e1778. 10.7717/peerj.1778
Felice R. N., Goswami A., (2018). Developmental Origins of Mosaic Evolution in the Avian Cranium. Proc. Natl. Acad. Sci. U.S.A. 115, 555–560. 10.1073/pnas.1716437115
Foote M., (1991). Morphological and Taxonomic Diversity in a Clade’s History: the Blastoid Record and Stochastic Simulations. Contrib. Mus. Paleontol. 28, 101–140.
Foote M., (1994). Morphological Disparity in Ordovician-Devonian Crinoids and the Early Saturation of Morphological Space. Paleobiology 20, 320–344. 10.1017/s009483730001280x
Fortey R. A., Briggs D. E. G., Wills M. A., (1996). The Cambrian Evolutionary ‘explosion': Decoupling Cladogenesis from Morphological Disparity. Biol. J. Linn. Soc. 57, 13–33. 10.1111/j.1095-8312.1996.tb01693.x
Foth C., Ascarrunz E., Joyce W. G., (2017). Still Slow, but Even Steadier: an Update on the Evolution of Turtle Cranial Disparity Interpolating Shapes along Branches. R. Soc. Open Sci. 4, 170899. 10.1098/rsos.170899
Foth C., Brusatte S. L., Butler R. J., (2012). Do different Disparity Proxies Converge on a Common Signal? Insights from the Cranial Morphometrics and Evolutionary History of Pterosauria (Diapsida: Archosauria). J. Evol. Biol. 25, 904–915. 10.1111/j.1420-9101.2012.02479.x
Foth C., Ezcurra M. D., Sookias R. B., Brusatte S. L., Butler R. J., (2016a). Unappreciated Diversification of Stem Archosaurs during the Middle Triassic Predated the Dominance of Dinosaurs. BMC Evol. Biol. 16, 188. 10.1186/s12862-016-0761-6
Foth C., Hedrick B. P., Ezcurra M. D., (2016b). Cranial Ontogenetic Variation in Early Saurischians and the Role of Heterochrony in the Diversification of Predatory Dinosaurs. PeerJ 4, e1589. 10.7717/peerj.1589
Foth C., Joyce W. G., (2016). Slow and Steady: the Evolution of Cranial Disparity in Fossil and Recent Turtles. Proc. R. Soc. B. 283, 20161881. 10.1098/rspb.2016.1881
Foth C., Rauhut O. W. M., (2013). The Good, the Bad, and the Ugly: the Influence of Skull Reconstructions and Intraspecific Variability in Studies of Cranial Morphometrics in Theropods and Basal Saurischians. PLoS One 8, e72007. 10.1371/journal.pone.0072007
Friedman M., (2009). Ecomorphological Selectivity Among marine Teleost Fishes during the End-Cretaceous Extinction. Proc. Natl. Acad. Sci. 106, 5218–5223. 10.1073/pnas.0808468106
Gingerich P. D., (2001). “Rates of Evolution on the Time Scale of the Evolutionary Process,” in Microevolution Rate, Pattern, Process. Editors Hendry A. P., Kinnison M. T., (Dordrecht: Springer), 127–144. 10.1007/978-94-010-0585-2_9
Gingerich P. D., (1983). Rates of Evolution: Effects of Time and Temporal Scaling. Science 222, 159–161. 10.1126/science.222.4620.159
Godoy P. L., Benson R. B. J., Bronzati M., Butler R. J., (2019). The Multi-Peak Adaptive Landscape of Crocodylomorph Body Size Evolution. BMC Evol. Biol. 19, 167. 10.1186/s12862-019-1466-4
Goolsby E. W., Bruggeman J., Ané C., (2017). Rphylopars: Fast Multivariate Phylogenetic Comparative Methods for Missing Data and Within‐species Variation. Methods Ecol. Evol. 8, 22–27. 10.1111/2041-210x.12612
Gould S. J., (2002). The Structure of Evolutionary Theory. Cambridge MA: Harvard University Press.
Gower D. J., (2003). Osteology of the Early Archosaurian Reptile Erythrosuchus Africanus Broom. Ann. South. Afr. Mus. 110, 1–84.
Grenard S., (1991). Handbook of Alligators and Crocodiles. Malabar: Krieger Publishing.
Guillerme T., Cooper N., (2018). Time for a Rethink: Time Sub‐sampling Methods in Disparity‐through‐time Analyses. Palaeontology 61, 481–493. 10.1111/pala.12364
Guillerme T., (2018). dispRity: a Modular R Package for Measuring Disparity. Methods Ecol. Evol. 9, 1755–1763. 10.1111/2041-210x.13022
Guillerme T., Puttick M. N., Marcy A. E., Weisbecker V., (2020). Shifting Spaces: Which Disparity or Dissimilarity Measurement Best Summarize Occupancy in Multidimensional Spaces? Ecol. Evol. 10, 7261–7275. 10.1002/ece3.6452
Gunz P., Mitteroecker P., Bookstein F. L., (2004). “Semilandmarks in Three Dimensions,” in Modern Morphometrics in Physical Anthropology. Editor Slice D. E., (New York: Kluwer Academic/Plenum Publishers), 73–98.
Hammer O., Harper D. A. T., (2006). Paleontological Data Analysis. Malden: Blackwell Publishing.
Hammer O., Harper D. A. T., Ryan P. D., (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4, 1–9.
Harmon L. J., Losos J. B., Jonathan Davies T., Gillespie R. G., Gittleman J. L., Bryan Jennings W., et al. (2010). Early Bursts of Body Size and Shape Evolution Are Rare in Comparative Data. Evolution 64, 2385–2396. 10.1111/j.1558-5646.2010.01025.x
Heimhofer U., Hochuli P. A., Burla S., Dinis J. M. L., Weissert H., (2005). Timing of Early Cretaceous Angiosperm Diversification and Possible Links to Major Paleoenvironmental Change. Geol. 33, 141–144. 10.1130/g21053.1
Henderson D. M., (2002). The Eyes Have it: the Sizes, Shapes, and Orientations of Theropod Orbits as Indicators of Skull Strength and Bite Force. J. Vertebr. Paleontol. 22, 766–778.
Hendry A. P., Kinnison M. T., (1999). Perspective: the Pace of Modern Life: Measuring Rates of Contemporary Microevolution. Evolution 53, 1637–1653. 10.1111/j.1558-5646.1999.tb04550.x
Higham T. E., Russell A. P., (2010). Divergence in Locomotor Performance, Ecology, and Morphology between Two Sympatric Sister Species of Desert-Dwelling Gecko. Biol. J. Linn. Soc. 101, 860–869. 10.1111/j.1095-8312.2010.01539.x
Hughes M., Gerber S., Wills M. A., (2013). Clades Reach Highest Morphological Disparity Early in Their Evolution. Proc. Natl. Acad. Sci. USA 110, 13875–13879. 10.1073/pnas.1302642110
Hunt G., (2006). Fitting and Comparing Models of Phyletic Evolution: Random Walks and beyond. Paleobiology 32, 578–601. 10.1666/05070.1
Hutchinson J. R., (2006). The Evolution of Locomotion in Archosaurs. Comptes Rendus Palevol. 5, 519–530. 10.1016/j.crpv.2005.09.002
Hutchinson J. R., (2001). The Evolution of Pelvic Osteology and Soft Tissues on the Line to Extant Birds (Neornithes). Zool. J. Linn. Soc. 131, 123–168. 10.1111/j.1096-3642.2001.tb01313.x
Irmis R. B., (2010). Evaluating Hypotheses for the Early Diversification of Dinosaurs. Earth Environ. Sci. Trans. R. Soc. Edinb. 101, 397–426. 10.1017/s1755691011020068
Jackson D. A., (1993). Stopping Rules in Principal Components Analysis: a Comparison of Heuristical and Statistical Approaches. Ecology 74, 2204–2214. 10.2307/1939574
Jaquier V. P., Fraser N. C., Furrer H., Scheyer T. M., (2017). Osteology of a New Specimen of Macrocnemus Aff. M. Fuyuanensis (Archosauromorpha, Protorosauria) from the Middle Triassic of Europe: Potential Implications for Species Recognition and Paleogeography of Tanystropheid Protorosaurs. Front. Earth Sci. 5, 91. 10.3389/feart.2017.00091
Jernvall J., Hunter J. P., Fortelius M., (2000). “Trends in the Evolution of Molar crown Types in Ungulate Mammals: Evidence from the Northern Hemisphere,” in Development, Function and Evolution of Teeth. Editors Teaford M. F., Smith M. M., Ferguson M. W. J., (Cambridge: Cambridge University Press), 269–281. 10.1017/cbo9780511542626.019
Jetz W., Thomas G. H., Joy J. B., Hartmann K., Mooers A. O., (2012). The Global Diversity of Birds in Space and Time. Nature 491, 444–448. 10.1038/nature11631
Jonsson K. A., Fabre P.-H., Fritz S. A., Etienne R. S., Ricklefs R. E., Jorgensen T. B., et al. (2012). Ecological and Evolutionary Determinants for the Adaptive Radiation of the Madagascan Vangas. Proc. Natl. Acad. Sci. 109, 6620–6625. 10.1073/pnas.1115835109
Jorgensen M. E., Reilly S. M., (2013). Phylogenetic Patterns of Skeletal Morphometrics and Pelvic Traits in Relation to Locomotor Mode in Frogs. J. Evol. Biol. 26, 929–943. 10.1111/jeb.12128
Kinnison M. T., Hendry A. P., (2001). “The Pace of Modern Life II: from Rates of Contemporary Microevolution to Pattern and Process,” in Microevolution Rate, Pattern, Process. Editors Hendry A. P., Kinnison M. T., (Dordrecht: Springer), 145–164. 10.1007/978-94-010-0585-2_10
Kley N. J., Sertich J. J. W., Turner A. H., Krause D. W., O'Connor P. M., Georgi J. A., (2010). Craniofacial Morphology of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 30, 13–98. 10.1080/02724634.2010.532674
Klingenberg C. P., (2011). MorphoJ: an Integrated Software Package for Geometric Morphometrics. Mol. Ecol. Resour. 11, 353–357. 10.1111/j.1755-0998.2010.02924.x
Li C., Wu X.-c., Cheng Y.-n., Sato T., Wang L., (2006). An Unusual Archosaurian from the marine Triassic of China. Naturwissenschaften 93, 200–206. 10.1007/s00114-006-0097-y
Lü J., Azuma Y., Dong Z., Barsbold R., Kobayashi Y., Lee Y.-N., (2009). New Material of Dsungaripterid Pterosaurs (Pterosauria: Pterodactyloidea) from Western Mongolia and its Palaeoecological Implications. Geol. Mag. 146, 690–700. 10.1017/s0016756809006414
Lynch M., (1990). The Rate of Morphological Evolution in Mammals from the Standpoint of the Neutral Expectation. Am. Naturalist 136, 727–741. 10.1086/285128
Madsen O., Scally M., Douady C. J., Kao D. J., DeBry R. W., Adkins R., et al. (2001). Parallel Adaptive Radiations in Two Major Clades of Placental Mammals. Nature 409, 610–614. 10.1038/35054544
Maidment S. C. R., Barrett P. M., (2012). Does Morphological Convergence Imply Functional Similarity? A Test Using the Evolution of Quadrupedalism in Ornithischian Dinosaurs. Proc. R. Soc. B. 279, 3765–3771. 10.1098/rspb.2012.1040
Mannion P. D., Benson R. B. J., Carrano M. T., Tennant J. P., Judd J., Butler R. J., (2015). Climate Constrains the Evolutionary History and Biodiversity of Crocodylians. Nat. Commun. 6, 8438. 10.1038/ncomms9438
Martínez R. N., (2009). Adeopapposaurus mognai, gen. et sp. nov. (Dinosauria: Sauropodomorpha), with comments on adaptations of basal Sauropodomorpha. J. Vertebr. Paleontol. 29, 142–164. 10.1671/039.029.0102
Marx F. G., Fordyce R. E., (2015). Baleen Boom and Bust: a Synthesis of Mysticete Phylogeny, Diversity and Disparity. R. Soc. Open Sci. 2, 140434. 10.1098/rsos.140434
McPhee B. W., Benson R. B. J., Botha-Brink J., Bordy E. M., Choiniere J. N., (2018). A Giant dinosaur from the Earliest Jurassic of South Africa and the Transition to Quadrupedality in Early Sauropodomorphs. Curr. Biol. 28, 3143–e7. 10.1016/j.cub.2018.07.063
Michaud M., Veron G., Peignè S., Blin A., Fabre A.-C., (2018). Are Phenotypic Disparity and Rate of Morphological Evolution Correlated with Ecological Diversity in Carnivora? Biol. J. Linn. Soc. 124, 294–307. 10.1093/biolinnean/bly047
Moon B. C., Stubbs T. L., (2020). Early High Rates and Disparity in the Evolution of Ichthyosaurs. Commun. Biol. 3, 68–8. 10.1038/s42003-020-0779-6
Morris Z. S., Vliet K. A., Abzhanov A., Pierce S. E., (2019). Heterochronic Shifts and Conserved Embryonic Shape Underlie Crocodylian Craniofacial Disparity and Convergence. Proc. R. Soc. B. 286, 20182389. 10.1098/rspb.2018.2389
Navalón G., Bright J. A., Marugán‐Lobón J., Rayfield E. J., (2018). The Evolutionary Relationship Among Beak Shape, Mechanical Advantage, and Feeding Ecology in Modern Birds*. Evolution 73, 422–435. 10.1111/evo.13655
Nesbitt S. J., Brusatte S. L., Desojo J. B., Liparini A., De França M. A. G., Weinbaum J. C., et al. (2013). Rauisuchia. Geol. Soc. Lond. Spec. Publications 379, 241–274. 10.1144/sp379.1
Nesbitt S. J., Flynn J. J., Pritchard A. C., Parrish J. M., Ranivoharimanana L., Wyss A. R., (2015). Postcranial Osteology ofAzendohsaurus madagaskarensis(?Middle to Upper Triassic, Isalo Group, Madagascar) and its Systematic Position Among Stem Archosaur Reptiles. Bull. Am. Mus. Nat. Hist. 398, 1–126. 10.1206/amnb-899-00-1-126.1
Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team (2018). Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137, https://CRAN.R-project.org/package=nlme.
Pinto G., Mahler D. L., Harmon L. J., Losos J. B., (2008). Testing the Island Effect in Adaptive Radiation: Rates and Patterns of Morphological Diversification in Caribbean and mainland Anolis Lizards. Proc. R. Soc. B. 275, 2749–2757. 10.1098/rspb.2008.0686
Prentice K. C., Ruta M., Benton M. J., (2011). Evolution of Morphological Disparity in Pterosaurs. J. Syst. Palaeontology 9, 337–353. 10.1080/14772019.2011.565081
Puttick M. N., Guillerme T., Wills M. A., (2020). The Complex Effects of Mass Extinctions on Morphological Disparity. Evolution 74, 2207–2220. 10.1111/evo.14078
Puttick M. N., (2018). Mixed Evidence for Early Bursts of Morphological Evolution in Extant Clades. J. Evol. Biol. 31, 502–515. 10.1111/jeb.13236
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Available at: http://www.r-project.org.
Rauhut O. W. M., (2014). New Observations on the Skull of Archaeopteryx. Paläontol Z. 88, 211–221. 10.1007/s12542-013-0186-0
Rauhut O. W. M., Foth C., (2020). “The Origin of Birds: Current Consensus, Controversy, and the Occurrence of Feathers,” in The Evolution of Feathers. Editors Foth C., Rauhut O. W. M., (Cham: Springer Nature), 27–45. 10.1007/978-3-030-27223-4_3
Raup D. M., Sepkoski J. J., (1982). Mass Extinctions in the marine Fossil Record. Science 215, 1501–1503. 10.1126/science.215.4539.1501
Renesto S., Dalla Vecchia F. M., Peters D. S., (2002). Morphological Evidence for Bipedalism in the Late Triassic Prolacertiform Reptile Langobardisaurus. Senckenbergiana lethaea 82, 95–106. 10.1007/bf03043775
Renesto S., Saller F., (2018). Evidences for a Semi-aquatic Life Style in the Triassic Diapsid Reptile Tanystropheus. Riv. Ital. di Paleontol. e Stratigr. 124, 23–34.
Rohlf F. J., Slice D., (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst. Zoolog. 39, 40–59. 10.2307/2992207
Rohlf F. J., (2005). tpsDig, Digitize Landmarks and Outlines. version 2.05.
Roopnarine P. D., (2003). Analysis of Rates of Morphologic Evolution. Annu. Rev. Ecol. Evol. Syst. 34, 605–632. 10.1146/annurev.ecolsys.34.011802.132407
Ruta M., Botha-Brink J., Mitchell S. A., Benton M. J., (2013). The Radiation of Cynodonts and the Ground Plan of Mammalian Morphological Diversity. Proc. R. Soc. B. 280, 20131865. 10.1098/rspb.2013.1865
Ruta M., Wagner P. J., Coates M. I., (2006). Evolutionary Patterns in Early Tetrapods. I. Rapid Initial Diversification Followed by Decrease in Rates of Character Change. Proc. R. Soc. B. 273, 2107–2111. 10.1098/rspb.2006.3577
Sander P. M., Christian A., Clauss M., Fechner R., Gee C. T., Griebeler E.-M., et al. (2011). Biology of the Sauropod Dinosaurs: the Evolution of Gigantism. Biol. Rev. 86, 117–155. 10.1111/j.1469-185x.2010.00137.x
Schachner E. R., Manning P. L., Dodson P., (2011). Pelvic and Hindlimb Myology of the Basal Archosaur Poposaurus Gracilis (Archosauria: Poposauroidea). J. Morphol. 272, 1464–1491. 10.1002/jmor.10997
Schluter D., (2000). The Ecology of Adaptive Radiation. Oxford: OUP, 302.
Schweizer M., Hertwig S. T., Seehausen O., (2014). Diversity versus Disparity and the Role of Ecological Opportunity in a continental Bird Radiation. J. Biogeogr. 41, 1301–1312. 10.1111/jbi.12293
Seehausen O., (2006). African Cichlid Fish: a Model System in Adaptive Radiation Research. Proc. Biol. Sci. 273, 1987–1998. 10.1098/rspb.2006.3539
Sereno P. C., Martínez R. N., Alcober O. A., (2013). Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha). J. Vertebr. Paleontol. Mem. 12, 83–179. 10.1080/02724634.2013.820113
Sereno P. C., Dong Z., (1992). The Skull of the Basal stegosaur Huayangosaurus Taibaii and a Cladistic Diagnosis of Stegosauria. J. Vertebr. Paleontol. 12, 318–343. 10.1080/02724634.1992.10011463
Sharov A. G., (1971). [New Flying Reptiles from the Mesozoic of Kazakhstan and Kirghizia]. Tr. Paleontol. Inst. Akad. Nauk S.S.R. 130, 104–113. [in Russian].
Simões M., Breitkreuz L., Alvarado M., Baca S., Cooper J. C., Heins L., et al. (2016). The Evolving Theory of Evolutionary Radiations. Trends Ecol. Evol. 31, 27–34. 10.1016/j.tree.2015.10.007
Simões T. R., Vernygora O., Caldwell M. W., Pierce S. E., (2020). Megaevolutionary Dynamics and the Timing of Evolutionary Innovation in Reptiles. Nat. Commun. 11, 3322. 10.1038/s41467-020-17190-9
Simpson G. G., (1953). Major Features of Evolution. New York: Columbia Univ. Press.
Simpson G. G., (1944). Tempo and Mode in Evolution. New York: Columbia Univ. Press.
Sookias R. B., Butler R. J., Benson R. B. J., (2012). Rise of Dinosaurs Reveals Major Body-Size Transitions Are Driven by Passive Processes of Trait Evolution. Proc. R. Soc. B. 279, 2180–2187. 10.1098/rspb.2011.2441
Sookias R. B., Dilkes D., Sobral G., Smith R. M. H., Wolvaardt F. P., Arcucci A. B., et al. (2020). The Craniomandibular Anatomy of the Early Archosauriform Euparkeria Capensis and the Dawn of the Archosaur Skull. R. Soc. Open Sci. 7, 200116. 10.1098/rsos.200116
Sookias R. B., (2020). Exploring the Effects of Character Construction and Choice, Outgroups and Analytical Method on Phylogenetic Inference from Discrete Characters in Extant Crocodilians. Zool. J. Linn. Soc. 189, 670–699. 10.1093/zoolinnean/zlz015
Spiekman S. N. F., Scheyer T. M., (2019). A Taxonomic Revision of the Genus Tanystropheus (Archosauromorpha, Tanystropheidae). Palaeontol. Electron. 22, 1–46. 10.26879/1038
Stanley S. M., (1995). A Theory of Evolution above the Species Level. Proc. Natl. Acad. Sci. U S A. 72, 646–650. 10.1073/pnas.72.2.646
Stubbs T. L., Pierce S. E., Elsler A., Anderson P. S. L., Rayfield E. J., Benton M. J., (2021). Ecological Opportunity and the Rise and Fall of Crocodylomorph Evolutionary Innovation. Proc. R. Soc. B 288, 20210069. 10.1098/rspb.2021.0069
Stubbs T. L., Pierce S. E., Rayfield E. J., Anderson P. S. L., (2013). Morphological and Biomechanical Disparity of Crocodile-Line Archosaurs Following the End-Triassic Extinction. Proc. R. Soc. B. 280, 20131940. 10.1098/rspb.2013.1940
Toljagić O., Butler R. J., (2013). Triassic-Jurassic Mass Extinction as Trigger for the Mesozoic Radiation of Crocodylomorphs. Biol. Lett. 9, 20130095. 10.1098/rsbl.2013.0095
Tykoski R. S., (2005). Anatomy, Ontogeny, and Phylogeny of Coelophysoid Theropods. Austin: The University of Texas.
Valentine J. W., (2004). On the Origin of Phyla. Chicago: University of Chicago Press.
Verde Arregoitia L. D., Fisher D. O., Schweizer M., (2017). Morphology Captures Diet and Locomotor Types in Rodents. R. Soc. Open Sci. 4, 160957. 10.1098/rsos.160957
Vidal-García M., Scott Keogh J., (2017). Phylogenetic Conservatism in Skulls and Evolutionary Lability in Limbs - Morphological Evolution across an Ancient Frog Radiation Is Shaped by Diet, Locomotion and Burrowing. BMC Evol. Biol. 17, 165. 10.1186/s12862-017-0993-0
Wagner P. J., (1997). Patterns of Morphologic Diversification Among the Rostroconchia. Paleobiology 23, 115–150. 10.1017/s0094837300016675
Weishampel D. B., Dodson P., Osmólska H., (2004). The Dinosauria. Berkeley: University of California Press.
Weishampel D. B., Norman D. B., (1989). Vertebrate Herbivory in the Mesozoic; Jaws, Plants, and Evolutionary Metrics. Geol. Soc. Am. Spec. Pap. 238, 87–101. 10.1130/spe238-p87
Wellnhofer P., (1978). Pterosauria. Stuttgart, New York: Gustav Fischer Verlag.
Wesley-Hunt G. D., (2005). The Morphological Diversification of Carnivores in North America. Paleobiology 31, 35–55. 10.1666/0094-8373(2005)031<0035:tmdoci>2.0.co;2
Wilberg E. W., (2017). Investigating Patterns of Crocodyliform Cranial Disparity through the Mesozoic and Cenozoic. Zool. J. Linn. Soc. 181, 189–208. 10.1093/zoolinnean/zlw027
Wills M. A., Briggs D. E. G., Fortey R. A., (1994). Disparity as an Evolutionary index: a Comparison of Cambrian and Recent Arthropods. Paleobiology 20, 93–130. 10.1017/s009483730001263x
Wills M. A., (2001). “Morphological Disparity: a Primer,” in Fossils, Phylogeny, and Form: An Analytical Approach. Editors Adrain J. M., Edgecombe G. D., Lieberman B. S., (Boston: Springer), 55–144. 10.1007/978-1-4615-0571-6_4
Wu X.-c., Sues H.-D., Sun A., (1995). A Plant-Eating Crocodyliform Reptile from the Cretaceous of China. Nature 376, 678–680. 10.1038/376678a0
Zelditch M. L., Swiderski D. L., Sheets H. D., (2012). Geometric Morphometrics for Biologists: A Primer. Amsterdam: Elsevier Academic Press.
Ősi A., Young M. T., Galácz A., Rabi M., (2018). A New Large-Bodied Thalattosuchian Crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with Further Evidence of the Mosaic Acquisition of marine Adaptations in Metriorhynchoidea. PeerJ 6, e4668. 10.7717/peerj.4668
Ősi A., (2015). Feeding-related Characters in Basal Pterosaurs: Implications for Jaw Mechanism, Dental Function and Diet. Lethaia 44, 136–152.