climate change; dispersal; experiments; habitat fragmentation; lizard; Animal Science and Zoology; Ecology, Evolution, Behavior and Systematics
Abstract :
[en] 1. Contemporary climate change affects population dynamics, but its influence varies with landscape structure. It is still unclear whether landscape fragmentation buffers or amplifies the effects of climate on population size and on the age and body size of individuals composing these populations. 2. This study aims to investigate the impacts of warm climates on lizard life-history traits and population dynamics in habitats that vary in their connectivity. 3. We monitored common lizard (Zootoca vivipara) populations for three years in an experimental system in which both climatic conditions and connectivity among habitats were simultaneously manipulated. We considered two climatic treatments (i.e., present-day climate and warm climate (+1.4°C than present-day climate)) and two connectivity treatments (i.e., a connected treatment in which individuals could move from one climate to the other and an isolated treatment in which movement between climates was not possible). We monitored survival, reproduction, growth, dispersal, age and body size of each individual in the system as well as population density through time. 4. We found that the influence of warm climates on life-history traits and population dynamics depended on connectivity among thermal habitats. Populations in warm climates were i) composed of younger individuals only when isolated; ii) larger in population size only in connected habitats; and iii) composed of larger age-specific individuals independently of the landscape configuration. The connectivity among habitats altered population responses to climate warming likely through asymmetries in the flow and phenotype of dispersers between thermal habitats. 5. Our results demonstrate that landscape fragmentation can drastically change the dynamics and persistence of populations facing climate change.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Pellerin, Félix ; Laboratoire Évolution and Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier, Toulouse, France ; Institute of Marine Ecosystem and Fishery Science (IMF), Center of Earth System Research and Sustainability (CEN), University of Hamburg, Palmaille 5, Hamburg, Germany
Bestion, Elvire; Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, 2 route du CNRS, 09200 Moulis, France
Winandy, Laurane ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Laboratoire Évolution and Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier, Toulouse, France ; Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, 2 route du CNRS, 09200 Moulis, France
Di Gesu, Lucie; Laboratoire Évolution and Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier, Toulouse, France
Richard, Murielle; Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, 2 route du CNRS, 09200 Moulis, France
Aguilée, Robin; Laboratoire Évolution and Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier, Toulouse, France
Cote, Julien ; Laboratoire Évolution and Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier, Toulouse, France
Language :
English
Title :
Connectivity among thermal habitats buffers the effects of warm climate on life-history traits and population dynamics.
Armsworth, P. R., & Roughgarden, J. E. (2005). The impact of directed versus random movement on population dynamics and biodiversity patterns. The American Naturalist, 165(4), 449–465. https://doi.org/10.1086/428595
Ashcroft, M. B., Chisholm, L. A., & French, K. O. (2009). Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15(3), 656–667. https://doi.org/10.1111/j.1365-2486.2008.01762.x
Avery, R. A. (1966). Food and feeding habits of the common lizard (Lacerta vivipara) in the west of England. Journal of Zoology, 149(2), 115–121.
Barton, K. (2020). MuMIn: Multi-model inference. https://cran.r-project.org/package=MuMIn
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bestion, E., Clobert, J., & Cote, J. (2015). Dispersal response to climate change: Scaling down to intraspecific variation. Ecology Letters, 18(11), 1226–1233. https://doi.org/10.1111/ele.12502
Bestion, E., Jacob, S., Zinger, L., Di Gesu, L., Richard, M., White, J., & Cote, J. (2017). Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nature Ecology & Evolution, 1, 161. https://doi.org/10.1038/s41559-017-0161
Bestion, E., Soriano-Redondo, A., Cucherousset, J., Jacob, S., White, J., Zinger, L., Fourtune, L., Di Gesu, L., Teyssier, A., & Cote, J. (2019). Altered trophic interactions in warming climates: Consequences for predator diet breadth and fitness. Proceedings of the Royal Society B: Biological Sciences, 286(1914), 20192227. https://doi.org/10.1098/rspb.2019.2227
Bestion, E., Teyssier, A., Richard, M., Clobert, J., & Cote, J. (2015). Live fast, die young: Experimental evidence of population extinction risk due to climate change. PLoS Biology, 13(10), e1002281.
Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V. M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T. G., Chaput-Bardy, A., Clobert, J., Dytham, C., … Travis, J. M. J. (2012). Costs of dispersal. Biological Reviews, 87(2), 290–312.
Boudjemadi, K., Lecomte, J., & Clobert, J. (1999). Influence of connectivity on demography and dispersal in two contrasting habitats: An experimental approach. Journal of Animal Ecology, 68(6), 1207–1224. https://doi.org/10.1046/j.1365-2656.1999.00363.x
Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews, 80(2), 205–225. https://doi.org/10.1017/S1464793104006645
Brans, K. I., & De Meester, L. (2018). City life on fast lanes: Urbanization induces an evolutionary shift towards a faster life style in the water flea daphnia. Functional Ecology, 32(June), 2225–2240. https://doi.org/10.1111/1365-2435.13184
Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453–460. https://doi.org/10.1016/j.tree.2008.03.011
Burgess, S. C., & Marshall, D. J. (2011). Are numbers enough? Colonizer phenotype and abundance interact to affect population dynamics. Journal of Animal Ecology, 80(3), 681–687. https://doi.org/10.1111/j.1365-2656.2010.01802.x
Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23–35. https://doi.org/10.1007/s00265-010-1029-6
Chamaillé-Jammes, S., Massot, M., Aragon, P., & Clobert, J. (2006). Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Global Change Biology, 12(2), 392–402.
Charmantier, A., McCleery, R. H., Cole, L. R., Perrins, C., Kruuk, L. E. B., & Sheldon, B. C. (2008). Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science (New York, N.Y.), 320(5877), 800–803.
Chen, I.-C., Hill, J. K., Ohlemueller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science (New York, N.Y.), 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432
Clobert, J., Galliard, L., Cote, J., Meylan, S., & Massot, M. (2009). Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters, 12(3), 197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x
Comte, L., Hugueny, B., & Grenouillet, G. (2016). Climate interacts with anthropogenic drivers to determine extirpation dynamics. Ecography, 39(10), 1008–1016. https://doi.org/10.1111/ecog.01871
Cote, J., Clobert, J., & Fitze, P. S. (2007). Mother–offspring competition promotes colonization success. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9703–9708.
Cotto, O., Massot, M., Ronce, O., & Clobert, J. (2015). Dispersal as a source of variation in age-specific reproductive strategies in a wild population of lizards. Proceedings of the Royal Society B: Biological Sciences, 282(1820), 20151741. https://doi.org/10.1098/rspb.2015.1741
Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12788–12793. https://doi.org/10.1073/pnas.0902080106
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6668–6672.
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., Nielsen, A., & Sibert, J. (2012). AD model builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27, 233–249.
Fryxell, D. C., Hoover, A. N., Alvarez, D. A., Arnesen, F. J., Benavente, J. N., Moffett, E. R., Kinnison, M. T., Simon, K. S., & Palkovacs, E. P. (2020). Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature: Warming leads to evolutionary downsizing. Proceedings of the Royal Society B: Biological Sciences, 287(1928), 20200608. https://doi.org/10.1098/rspb.2020.0608rspb20200608
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology and Evolution, 26(6), 285–291. https://doi.org/10.1016/j.tree.2011.03.005
Gérard, M., Marshall, L., Martinet, B., & Michez, D. (2021). Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century. Ecography, 44(2), 255–264.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science (New York, N.Y.), 293(5538), 2248–2251.
Goulet, C. T., Thompson, M. B., Michelangeli, M., Wong, B. B. M., & Chapple, D. G. (2017). Thermal physiology: A new dimension of the pace-of-life syndrome. Journal of Animal Ecology, 86(5), 1269–1280. https://doi.org/10.1111/1365-2656.12718
Hao, X., Zou, T., Han, X., Zhang, F., & Du, W. (2021). Grow fast but don't die young: Maternal effects mediate life-history trade-offs of lizards under climate warming. Journal of Animal Ecology, 90(6), 1550–1559.
Hartig, F. (2021). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/package=DHARMa
Hof, C., Araújo, M. B., Jetz, W., & Rahbek, C. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480(7378), 516–519.
Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5(6), 1211–1219. https://doi.org/10.1371/journal.pbio.0050157
Kalinkat, G., Schneider, F. D., Digel, C., Guill, C., Rall, B. C., & Brose, U. (2013). Body masses, functional responses and predator-prey stability. Ecology Letters, 16(9), 1126–1134. https://doi.org/10.1111/ele.12147
Le Galliard, J. F., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population dynamics in a short-lived lizard. Journal of Animal Ecology, 79(6), 1296–1307. https://doi.org/10.1111/j.1365-2656.2010.01732.x
Legrand, D., Guillaume, O., Baguette, M., Cote, J., Trochet, A., Calvez, O., Zajitschek, S., Zajitschek, F., Lecomte, J., Bénard, Q., Le Galliard, J.-F., & Clobert, J. (2012). The Metatron: An experimental system to study dispersal and metaecosystems for terrestrial organisms. Nature Methods, 9(8), 828–833.
Lenth, R. V. (2021). Emmeans: Estimated marginal means, aka least-squares means. https://cran.r-project.org/package=emmeans
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). Assessment, testing and comparison of statistical models using R. Journal of Open Source Software, 6(59), 3112. https://doi.org/10.31234/osf.io/vtq8f
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (2021). IPCC, 2021: Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1260/095830507781076194
Massot, M., Clobert, J., & Ferriere, R. (2008). Climate warming, dispersal inhibition and extinction risk. Global Change Biology, 14(3), 461–469.
Massot, M., Clobert, J., Montes-Poloni, L., Haussy, C., Cubo, J., & Meylan, S. (2011). An integrative study of ageing in a wild population of common lizards. Functional Ecology, 25(4), 848–858. https://doi.org/10.1111/j.1365-2435.2011.01837.x
Milling, C. R., Rachlow, J. L., Olsoy, P. J., Chappell, M. A., Johnson, T. R., Forbey, J. S., Shipley, L. A., & Thornton, D. H. (2018). Habitat structure modifies microclimate: An approach for mapping fine-scale thermal refuge. Methods in Ecology and Evolution, 9(6), 1648–1657. https://doi.org/10.1111/2041-210X.13008
Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134), 20170213.
Oliver, T. H., Marshall, H. H., Morecroft, M. D., Brereton, T., Prudhomme, C., & Huntingford, C. (2015). Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nature Climate Change, 5(10), 941–945.
Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117(3), 285–297. https://doi.org/10.1016/j.biocon.2003.12.008
Pearson, R. G. (2006). Climate change and the migration capacity of species. Trends in Ecology & Evolution, 21(3), 111–113. https://doi.org/10.1016/j.tree.2005.11.022
Pellerin, F., Bestion, E., Winandy, L., Di Gesu, L., Richard, M., Aguilée, R., & Cote, J. (2022). Data from: Connectivity among thermal habitats buffers the effects of warm climate on life-history traits and population dynamics. Dryad Digital Repository, https://doi.org/10.5061/dryad.p5hqbzksf
Pelletier, F., Garant, D., & Hendry, A. P. (2009). Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1523), 1483–1489. https://doi.org/10.1098/rstb.2009.0027
Piantoni, C., Navas, C. A., & Ibargüengoytía, N. R. (2019). A real tale of Godzilla: Impact of climate warming on the growth of a lizard. Biological Journal of the Linnean Society, 126(4), 768–782. https://doi.org/10.1093/biolinnean/bly216
R Core Team. (2021). R: A language and environment for statistical computing. https://www.r-project.org/
Rutschmann, A., Miles, D. B., Clobert, J., & Richard, M. (2016). Warmer temperatures attenuate the classic offspring number and reproductive investment trade-off in the common lizard, Zootoca vivipara. Biology Letters, 12(6), 20160101. https://doi.org/10.1098/rsbl.2016.0101
Rutschmann, A., Miles, D. B., Le Galliard, J. F., Richard, M., Moulherat, S., Sinervo, B., & Clobert, J. (2016). Climate and habitat interact to shape the thermal reaction norms of breeding phenology across lizard populations. Journal of Animal Ecology, 85(2), 457–466. https://doi.org/10.1111/1365-2656.12473
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E., & Evans, T. A. (2014). Microhabitats reduce animal's exposure to climate extremes. Global Change Biology, 20(2), 495–503. https://doi.org/10.1111/gcb.12439
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8), 401–406. https://doi.org/10.1038/nclimate1259
Sinervo, B., Mendez-De-La-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martìnez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N., Gadsden, H., Avila, L. J., Morando, M., De la Riva, I. J., Sepulveda, P. V., Rocha, C. F. D., Ibargüengoytía, N., Puntriano, C. A., Massot, M., … Sites, J. W., Jr. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science (New York, N.Y.), 328(5980), 894–899.
Skaug, H., Fournier, D., Bolker, B., Magnusson, A., & Nielsen, A. (n.d.). Generalized linear mixed models using “AD Model Builder”.
Speakman, J. R. (2005). Body size, energy metabolism and lifespan. Journal of Experimental Biology, 208(9), 1717–1730. https://doi.org/10.1242/jeb.01556
Suggitt, A. J., Wilson, R. J., Isaac, N. J. B., Beale, C. M., Auffret, A. G., August, T., Bennie, J. J., Crick, H. Q. P., Duffield, S., Fox, R., Hopkins, J. J., Macgregor, N. A., Morecroft, M. D., Walker, K. J., & Maclean, I. M. D. (2018). Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 8(8), 713–717. https://doi.org/10.1038/s41558-018-0231-9
Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Animals the scale of prediction. Science (New York, N.Y.), 320, 1296–1297.
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science (New York, N.Y.), 348(6234), 571–573. https://doi.org/10.1126/science.aaa4984
Vindenes, Y., Edeline, E., Ohlberger, J., Langangen, Ø., Winfield, I. J., Stenseth, N. C., & Vøllestad, L. A. (2014). Effects of climate change on trait-based dynamics of a top predator in freshwater ecosystems. The American Naturalist, 183(2), 243–256. https://doi.org/10.1086/674610
Warren, M. S., Hill, J. K., Thomas, J. A., Asher, J., Fox, R., Huntley, B., Roy, D. B., Telfer, M. G., Jeffcoate, S., Harding, P., Jeffcoate, G., Willis, S. G., Greatorex-Davies, J. N., Moss, D., & Thomas, C. D. (2001). Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 414, 65–69. https://doi.org/10.1038/35102054
Whitfield, S. M., Bell, K. E., Philippi, T., Sasa, M., Bolanos, F., Chaves, G., Savage, J. M., & Donnelly, M. A. (2007). Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8352–8356. https://doi.org/10.1073/pnas.0611256104
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Springer Science & Business Media.