Article (Scientific journals)
Prediction of forest nutrient and moisture regimes from understory vegetation with random forest classification models
Lisein, Jonathan; Fayolle, Adeline; Legrain, Andyne et al.
2022In Ecological Indicators, 144, p. 109446
Peer Reviewed verified by ORBi
 

Files


Full Text
Lisein_2022_Phytospy.pdf
Publisher postprint (2.59 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
floristic relevé; bioindicator; forest site; nutrient regime; moisture regime; Western Europe; Temperate forest; ecological group; forest management; random forest classification; ecogram matrix
Abstract :
[en] The proper choice of the tree species to be grown in a specific forest site requires a good knowledge of the tree species autecology and a comprehensive description of the local environmental conditions. In Belgium (Western Europe), ecological forest site are classified according to three major gradients : climate, soil nutrient (fertility) and soil moisture regimes. Understory indicator species are used by practitioners to determine nutrient and moisture regimes, but requires a significant expertise of forest ecosystems. The present work aims in a first instance at modelling the nutrient and moisture regimes based on species composition. Secondly, a practical decision support tool is developped and made available in order to predict forest nutrient and moisture regime starting from a floristic relevé. To do so, we collected floristic relevés representing understory vegetation diversity in Belgium and covering all the nutrient and moisture gradient. The combination of soil and topographic measurements with the indicator plants presence/absence support forest scientists in inferring a nutrient and moisture regime to each relevé. The resulting dataset was balanced along the different nutrient or moisture regimes and Random Forest classification models were trained in order to predict the forest site characteristic from indicator species presence (or absence). One model was fitted for the prediction of the nutrient regime, exclusively based on the floristic information. A second one was trained to classify the moisture regime. Accurate predictions confirms the appropriate use of indicator species for the Belgian forest site classification. The two models are intregrated in a web application dedicated to forest practionners. This website enables the automatic determination of nutrient and moisture regimes from the species list of a floristic relevé.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Lisein, Jonathan ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Fayolle, Adeline  ;  Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières et des milieux naturels
Legrain, Andyne ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Prévot, Céline;  Forêt.Nature asbl
Claessens, Hugues ;  Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières et des milieux naturels
Language :
English
Title :
Prediction of forest nutrient and moisture regimes from understory vegetation with random forest classification models
Alternative titles :
[fr] Prédiction du niveau trophique et hydrique des stations forestières en utilisant la flore indicatrice et des modèles de classification de Forêt Aléatoire
Publication date :
November 2022
Journal title :
Ecological Indicators
ISSN :
1470-160X
eISSN :
1872-7034
Publisher :
Elsevier BV
Volume :
144
Pages :
109446
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 23 September 2022

Statistics


Number of views
87 (18 by ULiège)
Number of downloads
108 (11 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
7
OpenCitations
 
0
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBi