[en] The proper choice of the tree species to be grown in a specific forest site requires a good knowledge of the tree species autecology and a comprehensive description of the local environmental conditions.
In Belgium (Western Europe), ecological forest site are classified according to three major gradients : climate, soil nutrient (fertility) and soil moisture regimes.
Understory indicator species are used by practitioners to determine nutrient and moisture regimes, but requires a significant expertise of forest ecosystems.
The present work aims in a first instance at modelling the nutrient and moisture regimes based on species composition.
Secondly, a practical decision support tool is developped and made available in order to predict forest nutrient and moisture regime starting from a floristic relevé.
To do so, we collected floristic relevés representing understory vegetation diversity in Belgium and covering all the nutrient and moisture gradient.
The combination of soil and topographic measurements with the indicator plants presence/absence support forest scientists in inferring a nutrient and moisture regime to each relevé.
The resulting dataset was balanced along the different nutrient or moisture regimes and Random Forest classification models were trained in order to predict the forest site characteristic from indicator species presence (or absence).
One model was fitted for the prediction of the nutrient regime, exclusively based on the floristic information.
A second one was trained to classify the moisture regime.
Accurate predictions confirms the appropriate use of indicator species for the Belgian forest site classification.
The two models are intregrated in a web application dedicated to forest practionners.
This website enables the automatic determination of nutrient and moisture regimes from the species list of a floristic relevé.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Lisein, Jonathan ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Fayolle, Adeline ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières et des milieux naturels
Legrain, Andyne ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Prévot, Céline; Forêt.Nature asbl
Claessens, Hugues ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières et des milieux naturels
Language :
English
Title :
Prediction of forest nutrient and moisture regimes from understory vegetation with random forest classification models
Alternative titles :
[fr] Prédiction du niveau trophique et hydrique des stations forestières en utilisant la flore indicatrice et des modèles de classification de Forêt Aléatoire
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Baeten, L., Bauwens, B., De Schrijver, A., De Keersmaeker, L., Van Calster, H., Vandekerkhove, K., Roelandt, B., Beeckman, H., Verheyen, K., Herb layer changes (1954–2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl. Veg. Sci. 12:2 (2009), 187–197.
Baeten, L., Hermy, M., Van Daele, S., Verheyen, K., Unexpected understorey community development after 30 years in ancient and post-agricultural forests. J. Ecol. 98:6 (2010), 1447–1453.
Bartoli, M., Tran-ha, M., Largier, G., Dumé, G., Larrieu, L., Ecoflore, un logiciel simple de diagnostic écologique. Revue forestière française 6 (2000), 530–547.
Bergès, L., Gégout, J.-C., Franc, A., Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann. For. Sci. 63:1 (2006), 31–42.
Biondi, E., Phytosociology today: Methodological and conceptual evolution. Plant Biosyst. 145:sup1 (2011), 19–29.
Braun-Blanquet, J., Pflanzensoziologie: grundzüge der vegetationskunde. 1928, Springer-Verlag, Berlin.
Braun-Blanquet, J., Plant sociology. The study of plant communities. 1932.
Cajander, A., On forest types. Über Waldtypen. Acta For. Fenn 1:1 (1909), 1–175.
Carignan, V., Villard, M.-A., Selecting indicator species to monitor ecological integrity: a review. Environ. Monit. Assessment 78:1 (2002), 45–61.
Chytrỳ, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollové, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J.H., Acic, S., Agrillo, E., and others, 2016. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19(1): 173–180. Publisher: Wiley Online Library.
Claessens, H., Pauwels, D., Thibaut, A., Rondeux, J., Site index curves and autecology of ash, sycamore and cherry in Wallonia (Southern Belgium). Forestry 72:3 (1999), 171–182.
Claessens, H., Oosterbaan, A., Savill, P., Rondeux, J., A review of the characteristics of black alder (Alnus Glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83:2 (2010), 163–175.
Claessens, H., Prévot, C., Lisein, J., Guide d'interprétation de la flore indicatrice en forêt. 2021, Forêt.nature edition.
Coudun, C., Gégout, J.-C., Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J. Veg. Sci. 18:4 (2007), 517–524.
Coudun, C., Gégout, J.-C., Piedallu, C., Rameau, J.-C., Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J. Biogeogr. 33:10 (2006), 1750–1763.
Cutler, D.R., Edwards, T.C. Jr, Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., Random forests for classification in ecology. Ecology 88:11 (2007), 2783–2792.
De Céceres, M., Legendre, P., Associations between species and groups of sites: indices and statistical inference. Ecology 90:12 (2009), 3566–3574.
De Jaegere, T., Hein, S., Claessens, H., A review of the characteristics of small-leaved lime (Tilia Cordata Mill.) and their implications for silviculture in a changing climate. Forests, 7(3), 2016, 56.
Diekmann, M., Species indicator values as an important tool in applied plant ecology-a review. Basic Appl. Ecol. 4:6 (2003), 493–506.
Douda, J., Boublík, K., Slezák, M., Biurrun, I., Nociar, J., Havrdová, A., Doudová, J., Acic, S., Brisse, H., Brunet, J., et al. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl. Veg. Sci. 19:1 (2016), 147–163.
Dubois, H., Claessens, H., Ligot, G., Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula Pendula Roth) Logs in Western Europe. Forests, 12(5), 2021, 599.
Dufrêne, M., Legendre, P., Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:3 (1997), 345–366.
Duvigneaud, P., La variabilité des associations végétales. Bulletin de la Société royale de Botanique de Belgique 78 (1946), 107–134.
Ellenberg, H., Zeigerwerte der Gefaesspflanzen Mitteleuropas. 1974, Göttingen, publisher erich goltze kg edition, Scripta Geobotanica IX.
Emweb, 2022. Wt – web GUI library in modern C++. URL: https://www.webtoolkit.eu.
Evans, J.S., Murphy, M.A., Holden, Z.A., Cushman, S.A., Modeling species distribution and change using random forest. Predictive species and habitat modeling in landscape ecology, 2011, Springer, 139–159.
Fayolle, A., Swaine, M.D., Bastin, J.-F., Bourland, N., Comiskey, J.A., Dauby, G., Doucet, J.-L., Gillet, J.-F., Gourlet-Fleury, S., Hardy, O.J., et al. Patterns of tree species composition across tropical African forests. J. Biogeogr. 41:12 (2014), 2320–2331.
Genuer, R., Poggi, J.-M., Tuleau-Malot, C., Variable selection using random forests. Pattern Recogn. Lett. 31:14 (2010), 2225–2236.
Godart, M.-F., 1989. Ecological Species Groups in Forest Communities in South Belgium. Vegetatio 81 (1/2): 127–135. ISSN 00423106.
Gégout, J.-C., Hervé, J.-C., Houllier, F., Pierrat, J.-C., Prediction of forest soil nutrient status using vegetation. J. Veg. Sci. 14:1 (2003), 55–62.
Gégout, J.-C., Coudun, C., Bailly, G., Jabiol, B., EcoPlant: a forest site database linking floristic data with soil and climate variables. J. Veg. Sci. 16:2 (2005), 257–260.
Hawkes, J.C., Pyatt, D.G., and White, I.M.S., 1997. Using Ellenberg Indicator Values to Assess Soil Quality in British Forests from Ground Vegetation: A Pilot Study. J. Appl. Ecol. 34(2): 375–387. ISSN 00218901, 13652664. doi: 10.2307/2404883.
Lameire, S., Hermy, M., Honnay, O., Two decades of change in the ground vegetation of a mixed deciduous forest in an agricultural landscape. J. Veg. Sci. 11:5 (2000), 695–704.
Legrain, X., Bock, L., Colinet, G., Suitability of the soil map and legacy data in Wallonia (BE) to support the GSM initiative. GlobalSoilMap, 2014, CRC Press, 99–102.
McCoy, D., Donohue, S., Evaluation of commercial soil test kits for field use. Commun. Soil Sci. Plant Anal. 10:4 (1979), 631–652.
Noble, I., 1987. The role of expert systems in vegetation science. Vegetatio 69(1): 115–121. Publisher: Springer.
Noirfalise, A., Forêts et stations forestières en Belgique. 1984, Les Presses Agronomiques, Gembloux.
Petit, S., Claessens, H., Vincke, C., Ponette, Q., Marchal, D., Le Fichier écologique des essences, version 2.0. Forêt. Nature 143 (2017), 12–19.
Pinto, P.E., Dupouey, J.-L., Hervé, J.-C., Legay, M., Wurpillot, S., Montpied, P., Gégout, J.-C., Optimizing the bioindication of forest soil acidity, nitrogen and mineral nutrition using plant species. Ecol. Ind. 71 (2016), 359–367.
Piqueray, J., Bottin, G., Delescaille, L.-M., Bisteau, E., Colinet, G., and Mahy, G., 2011. Rapid restoration of a species-rich ecosystem assessed from soil and vegetation indicators: The case of calcareous grasslands restored from forest stands. Ecol. Indic. 11(2): 724–733. ISSN 1470–160X. doi: 10.1016/j.ecolind.2010.06.007.
Prasad, A.M., Iverson, L.R., Liaw, A., Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:2 (2006), 181–199.
Pyatt, G., 1995. Ecological Site Classification for forestry in Great Britain. Forestry Commission (260): 6. Farnham.
Rameau, J.-C., Mansion, D., and Dumé, G., 1989. Flore forestière française: Plaines et collines, volume 1. Forêt privée française.
Sanchez, C., Claessens, H., Puissant, T., Lecomte, H., Rondeux, J., et al., 2007. Vegetation diversity assessment in Southern Belgium's permanent forest inventory. CAB International. Sustainable Forestry: from Monitoring and Modelling to Knowledge Management and Policy Science, pages 208–223.
Sewerniak, P., Puchałka, R., 2020. Topographically induced variation of microclimatic and soil conditions drives ground vegetation diversity in managed Scots pine stands on inland dunes. Agricultural and Forest Meteorology, 291: 108054. Publisher: Elsevier.
Sougnez, N., 1978. Les chênaies-charmaies du district calcaire mosan. Communications du Centre d’écologie forestière et rurales (I.R.S.I.A.), page 85 pp.
Tichỳ, L., 2002. Juice, software for vegetation classification. Journal of vegetation science, 13 (3): 451–453. Publisher: Wiley Online Library.
Van Calster, H., Baeten, L., Verheyen, K., De Keersmaeker, L., Dekeyser, S., Rogister, J.E., and Hermy, M., 2008. Diverging effects of different overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecology and Management, 256 (4): 519–528. ISSN 0378–1127. doi: 10.1016/j.foreco.2008.04.042.
Van der Perre, R., Bythell, S., Bogaert, P., Claessens, H., Ridremont, F., Tricot, C., Vincke, C., Ponette, Q., La carte bioclimatique de Wallonie: un nouveau découpage écologique du territoire pour le choix des essences forestières. Forêt-Nature 135 (2015), 47–58.
Verstraeten, G., Baeten, L., Van den Broeck, T., De Frenne, P., Demey, A., Tack, W., Muys, B., Verheyen, K., Temporal changes in forest plant communities at different site types. Appl. Veg. Sci. 16:2 (2013), 237–247.
Wampach, F., Lisein, J., Cordier, S., Ridremont, F., Claessens, H., Cartographie de la disponibilité en eau et en éléments nutritifs des stations forestières de Wallonie. Forêt. Nature 143 (2017), 47–60.
Wang, G.G., Use of understory vegetation in classifying soil moisture and nutrient regimes. For. Ecol. Manage. 129:1–3 (2000), 93–100.
Wilson, S.M., Pyatt, D., Malcolm, D., Connolly, T., The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. For. Ecol. Manage. 140:2–3 (2001), 101–116.
Wright, M.N., Ziegler, A., 2015. ranger: A fast implementation of random forests for high dimensional data in C++ and R. arXiv preprint arXiv:1508.04409.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.