Intestinal histopathology and immune responses following Escherichia coli lipopolysaccharide challenge in Nile tilapia fed enriched black soldier fly larval (BSF) meal supplemented with chitinase.
Agbohessou, Pamphile S; Mandiki, Syaghalirwa N M; Mbondo Biyong, Serge Ret al.
2022 • In Fish and Shellfish Immunology, 128, p. 620-633
[en] This study aimed to determine to what extend the addition of chitinase to black soldier fly larvae (BSF) meals enriched with either PUFA or LC-PUFA could improve the gut health of Nile tilapia and increase its immune status. Two types of BSF meals enriched with either α-linolenic acid (ALA) or ALA + eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) were produced using BSF larvae cultured on vegetable substrates (VGS) or fish offal substrates (FOS), respectively. Seven diets were formulated: a control FMFO diet and two other control diets VGD0 vs FOD0 containing the meals of each type of BSF meal as total replacement for fishmeal (FM) and fish oil (FO), as well as four diets supplemented with chitinase. Two doses of commercial chitinase from Aspergillus niger (2 g/kg and 5 g/kg of feed) were supplemented to the other diets VGD0 and FOD0 to formulate VGD2, VGD5, FOD2 and FOD5. After 53 days of feeding, FOD5 diet induced a similar growth performance as the FMFO control diet, while a significant decrease of growth was observed for the other BSF larval-based diets. BSF/FOS meal led to higher SGR of fish than BSF/VGS, as for the FOD5 compared to VGD5. At day 53, lysozyme values showed an increasing trend in fish fed all the BSF-based diets, especially those fed the VGD5. After the Escherichia coli lipopolysaccharide (LPS) injection (day 54), the same increasing trend was observed in lysozyme activity, and modulation was observed only in the VGD5 fish. ACH50 activity was reduced by the BSF-based diets except for the FOD5 diet at day 53, and LPS modulation was only observed for the VGS-chitinase-based diets at day 54. Peroxidase activity and total immunoglobulin (Igs) blood level were not affected by substrate, chitinase dose or LPS injection. At day 53, the low or high dose of chitinase increased the expressions of tlr2, il-1β and il-6 genes in the head kidney of fish fed the BSF/VGS diets compared to those fed the VGD0 or FMFO control diets. At day 54 after LPS injection, the high dose of chitinase decreased the expressions of tlr5 gene in the spleen and mhcII-α gene in the head kidney of fish fed FOD5 diets compared to those fed FOD0 diets. BSF/VGS but not BSF/FOS based diets increased fish sub-epithelial mucosa (SM) and lamina propria (LP) thickness and the number of goblet cells (GC) in fish, but dietary chitinase seemed to prevent some of these effects, especially at low dose. Results showed that chitinase supplementation of 5 g/kg of chitinase to a BSF-based diet enriched with LC-PUFA improved growth, prevented histological changes in the proximal intestine and enhanced some innate immune functions of Nile tilapia without any clear booster effect after challenge with E. coli LPS.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Agbohessou, Pamphile S ; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium, Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin. Electronic address: agbohessou.pamphile@yahoo.fr
Mandiki, Syaghalirwa N M; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
Mbondo Biyong, Serge R; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
Cornet, Valérie; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
Nguyen, Thi Mai; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
Lambert, Jérôme; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
Jauniaux, Thierry ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP)
Lalèyè, Philippe A; Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
Kestemont, Patrick; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium. Electronic address: patrick.kestemont@unamur.be
Language :
English
Title :
Intestinal histopathology and immune responses following Escherichia coli lipopolysaccharide challenge in Nile tilapia fed enriched black soldier fly larval (BSF) meal supplemented with chitinase.
Pamphile S. AGBOHESSOU is a PhD grant holder from ARES-CCD in PRD project (OpTil-Benin). Our acknowledgements to “Académie de Recherche et d'Enseignement Supérieur” (ARES-Belgium) which funded this research (Accession numbers: 31382).
Henry, M., Gasco, L., Piccolo, G., Fountoulaki, E., Review on the use of insects in the diet of farmed fish: past and future. Anim. Feed Sci. Technol. 203 (2015), 1–22, 10.1016/j.anifeedsci.2015.03.001.
Barroso, F.G., de Haro, C., Sánchez-Muros, M.-J., Venegas, E., Martínez-Sánchez, A., Pérez-Bañón, C., The potential of various insect species for use as food for fish. Aquaculture 422–423 (2014), 193–201, 10.1016/j.aquaculture.2013.12.024.
Makkar, H.P.S., Tran, G., Heuzé, V., Ankers, P., State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197 (2014), 1–33, 10.1016/j.anifeedsci.2014.07.008.
Nogales-Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kierończyk, B., Józefiak, A., Insect meals in fish nutrition. Rev. Aquacult. 11 (2019), 1080–1103, 10.1111/raq.12281.
Wang, Y.-S., Shelomi, M., Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods, 6, 2017, 91, 10.3390/foods6100091.
Fawole, F.J., Adeoye, A.A., Tiamiyu, L.O., Ajala, K.I., Obadara, S.O., Ganiyu, I.O., Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture, 518, 2020, 734849, 10.1016/j.aquaculture.2019.734849.
Kroeckel, S., Harjes, A.-G.E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., Schulz, C., When a turbot catches a fly: evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute — growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364–365 (2012), 345–352, 10.1016/j.aquaculture.2012.08.041.
Zarantoniello, M., Randazzo, B., Truzzi, C., Giorgini, E., Marcellucci, C., Vargas-Abúndez, J.A., Zimbelli, A., Annibaldi, A., Parisi, G., Tulli, F., Riolo, P., Olivotto, I., A six-months study on Black Soldier Fly (Hermetia illucens) based diets in zebrafish. Sci. Rep., 9, 2019, 8598, 10.1038/s41598-019-45172-5.
Agbohessou, P.S., Mandiki, S.N.M., Gougbédji, A., Megido, R.C., Lima, L.-M.W., Cornet, V., Lambert, J., Purcaro, G., Francis, F., Lalèyè, P.A., Kestemont, P., Efficiency of fatty acid-enriched dipteran-based meal on husbandry, digestive activity and immunological responses of Nile tilapia Oreochromis niloticus juveniles. Aquaculture, 545, 2021, 737193, 10.1016/j.aquaculture.2021.737193.
Belghit, I., Liland, N.S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å., Lock, E.J., Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491 (2018), 72–81, 10.1016/j.aquaculture.2018.03.016.
Li, S., Ji, H., Zhang, B., Zhou, J., Yu, H., Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 477 (2017), 62–70, 10.1016/j.aquaculture.2017.04.015.
Renna, M., Schiavone, A., Gai, F., Dabbou, S., Lussiana, C., Malfatto, V., Prearo, M., Capucchio, M.T., Biasato, I., Biasibetti, E., De Marco, M., Brugiapaglia, A., Zoccarato, I., Gasco, L., Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 8 (2017), 1–13, 10.1186/s40104-017-0191-3.
Agbohessou, P.S., Mandiki, S.N.M., Gougbédji, A., Megido, R.C., Hossain, M.S., De Jaeger, P., Larondelle, Y., Francis, F., Lalèyè, P.A., Kestemont, P., Total replacement of fish meal by enriched-fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles. Aquacult. Nutr., 2021, 10.1111/anu.13232 anu.13232.
Yildirim-Aksoy, M., Eljack, R., Schrimsher, C., Beck, B.H., Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique) diets improves growth and resistance to bacterial diseases. Aquac. Reports., 17, 2020, 10.1016/j.aqrep.2020.100373.
Belghit, I., Liland, N.S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å., Lock, E.-J., Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503 (2019), 609–619, 10.1016/j.aquaculture.2018.12.032.
Belghit, I., Waagbø, R., Lock, E.-J., Liland, N.S., Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquacult. Nutr. 25 (2019), 343–357, 10.1111/anu.12860.
Cardinaletti, G., Randazzo, B., Messina, M., Zarantoniello, M., Giorgini, E., Zimbelli, A., Bruni, L., Parisi, G., Olivotto, I., Tulli, F., Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 9, 2019, 251, 10.3390/ani9050251.
Finke, M.D., Estimate of chitin in raw whole insects. Zoo Biol. 26 (2007), 105–115, 10.1002/zoo.20123.
Nishino, R., Kakizaki, H., Fukushima, H., Matsumiya, M., Distribution of chitinolytic enzymes in the organs and cDNA cloning of chitinase isozymes from the liver of golden cuttlefish Sepia esculenta. Adv. Biosci. Biotechnol. 8 (2017), 361–377, 10.4236/abb.2017.810026.
Kashimura, A., Kimura, M., Okawa, K., Suzuki, H., Ukita, A., Wakita, S., Okazaki, K., Ohno, M., Bauer, P., Sakaguchi, M., Sugahara, Y., Oyama, F., Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli. Int. J. Mol. Sci. 16 (2015), 4028–4042, 10.3390/ijms16024028.
Tabata, E., Kashimura, A., Wakita, S., Sakaguchi, M., Sugahara, Y., Imamura, Y., Shimizu, H., Matoska, V., Bauer, P., Oyama, F., Acidic chitinase-chitin complex is dissociated in a competitive manner by acetic acid: purification of natural enzyme for supplementation purposes. Int. J. Mol. Sci., 19, 2018, 362, 10.3390/ijms19020362.
Zhang, Y., Feng, S., Chen, J., Qin, C., Lin, H., Li, W., Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 32 (2012), 844–854, 10.1016/j.fsi.2012.02.009.
Harikrishnan, R., Kim, J.-S., Balasundaram, C., Heo, M.-S., Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi. Exp. Parasitol. 131 (2012), 116–124, 10.1016/j.exppara.2012.03.020.
Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., Liu, G., Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 190 (2016), 1174–1181, 10.1016/j.foodchem.2015.06.076.
Liu, Y., Zhou, Z., Miao, W., Zhang, Y., Cao, Y., He, S., Bai, D., Yao, B., A chitinase from Aeromonas veronii CD3 with the potential to control myxozoan disease. PLoS One, 6, 2011, e29091, 10.1371/journal.pone.0029091.
Zhang, Y., Zhou, Z., Liu, Y., Cao, Y., He, S., Huo, F., Qin, C., Yao, B., Ringø, E., High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture. Appl. Microbiol. Biotechnol. 98 (2014), 1651–1662, 10.1007/s00253-013-5023-6.
Molinari, L.M., Pedroso, R.B., Scoaris, D. de O., Ueda-Nakamura, T., Nakamura, C.V., Dias Filho, B.P., Identification and partial characterisation of a chitinase from Nile tilapia, Oreochromis niloticus. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 146 (2007), 81–87, 10.1016/j.cbpb.2006.09.004.
Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., Weltzien, E., The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 492 (2018), 24–34, 10.1016/j.aquaculture.2018.03.038.
Torrecillas, S., Mompel, D., Caballero, M.J., Montero, D., Merrifield, D., Rodiles, A., Robaina, L., Zamorano, M.J., Karalazos, V., Kaushik, S., Izquierdo, M., Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture 468 (2017), 386–398, 10.1016/j.aquaculture.2016.11.005.
Nguyen, T.M., Agbohessou, P.S., Nguyen, T.H., Tran Thi, N.T., Kestemont, P., Immune responses and acute inflammation in common carp Cyprinus carpio injected by E.coli lipopolysaccharide (LPS) as affected by dietary oils. Fish Shellfish Immunol. 122 (2022), 1–12, 10.1016/j.fsi.2022.01.006.
Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbø, R., Torstensen, B.E., Lock, E.J., Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS One 12 (2017), 1–23, 10.1371/journal.pone.0183188.
Li, Y., Kortner, T.M., Chikwati, E.M., Belghit, I., Lock, E.J., Krogdahl, Å., Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520, 2020, 734967, 10.1016/j.aquaculture.2020.734967.
Lu, R., Chen, Y., Yu, W., Lin, M., Yang, G., Qin, C., Meng, X., Zhang, Y., Ji, H., Nie, G., Defatted black soldier fly (Hermetia illucens) larvae meal can replace soybean meal in juvenile grass carp (Ctenopharyngodon idellus) diets. Aquac. Reports., 18, 2020, 100520, 10.1016/j.aqrep.2020.100520.
Elia, A.C., Capucchio, M.T., Caldaroni, B., Magara, G., Dörr, A.J.M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A., Gasco, L., Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 496 (2018), 50–57, 10.1016/j.aquaculture.2018.07.009.
Smith, R.L., Gilkerson, E., Quantitation of glycosaminoglycan hexosamine using 3-methyl-2-benzothiazolone hydrazone hydrochloride. Anal. Biochem. 98 (1979), 478–480, 10.1016/0003-2697(79)90170-2.
Mohammadi, G., Adorian, T.J., Rafiee, G., Beneficial effects of Bacillus subtilis on water quality, growth, immune responses, endotoxemia and protection against lipopolysaccharide-induced damages in Oreochromis niloticus under biofloc technology system. Aquacult. Nutr. 26 (2020), 1476–1492, 10.1111/anu.13096.
Liu, C.Z., He, A.Y., Chen, L.Q., Limbu, S.M., Wang, Y.W., Zhang, M.L., Du, Z.Y., Molecular characterization and immune response to lipopolysaccharide (LPS) of the suppressor of cytokine signaling (SOCS)-1, 2 and 3 genes in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 50 (2016), 160–167, 10.1016/j.fsi.2016.01.027.
Ha, N., Gonçalves, A.F.N., Sousa, L.C., Biller-Takahashi, J.D., Takahashi, L.S., Dietary carbohydrates and protein of yeast modulate the early stages of innate immune response in tilapia (Oreochromis niloticus) primarily after LPS inoculation. Aquacult. Int. 25 (2017), 755–776, 10.1007/s10499-016-0073-2.
Palstra, A.P., Kals, J., Blanco Garcia, A., Dirks, R.P., Poelman, M., Immunomodulatory effects of dietary seaweeds in LPS challenged atlantic salmon Salmo salar as determined by deep RNA sequencing of the head kidney transcriptome. Front. Physiol., 9, 2018, 10.3389/fphys.2018.00625.
Mathieu, C., Milla, S., Mandiki, S.N.M., Douxfils, J., Kestemont, P., In vivo response of some immune and endocrine variables to LPS in Eurasian perch (Perca fluviatilis, L.) and modulation of this response by two corticosteroids, cortisol and 11-deoxycorticosterone. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 167 (2014), 25–34, 10.1016/j.cbpa.2013.09.006.
Nguyen, T.M., Mandiki, S.N.M., Gense, C., Tran, T.N.T., Nguyen, T.H., Kestemont, P., A combined in vivo and in vitro approach to evaluate the influence of linseed oil or sesame oil and their combination on innate immune competence and eicosanoid metabolism processes in common carp (Cyprinus carpio). Dev. Comp. Immunol., 102, 2020, 103488, 10.1016/j.dci.2019.103488.
Ting, C.H., Chen, Y.C., Chen, J.Y., Nile tilapia fry fed on antimicrobial peptide Epinecidin-1-expressing Artemia cyst exhibit enhanced immunity against acute bacterial infection. Fish Shellfish Immunol. 81 (2018), 37–48, 10.1016/j.fsi.2018.07.008.
Abarike, E.D., Cai, J., Lu, Y., Yu, H., Chen, L., Jian, J., Tang, J., Jun, L., Kuebutornye, F.K.A., Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 82 (2018), 229–238, 10.1016/j.fsi.2018.08.037.
Tran-Ngoc, K.T., Dinh, N.T., Nguyen, T.H., Roem, A.J., Schrama, J.W., Verreth, J.A.J., Interaction between dissolved oxygen concentration and diet composition on growth, digestibility and intestinal health of Nile tilapia (Oreochromis niloticus). Aquaculture 462 (2016), 101–108, 10.1016/j.aquaculture.2016.05.005.
Zhang, Y., Zhou, Z., Liu, Y., Cao, Y., He, S., Huo, F., Qin, C., Yao, B., Ringø, E., High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture. Appl. Microbiol. Biotechnol. 98 (2014), 1651–1662, 10.1007/s00253-013-5023-6.
Zhang, Y., Feng, S., Chen, J., Qin, C., Lin, H., Li, W., Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 32 (2012), 844–854, 10.1016/j.fsi.2012.02.009.
Alfiko, Y., Xie, D., Astuti, R.T., Wong, J., Wang, L., Insects as a feed ingredient for fish culture: status and trends. Aquac. Fish. 7 (2022), 166–178, 10.1016/j.aaf.2021.10.004.
Yano, T., The nonspecific immune system: humoral defense. Diego, S., (eds.) Fish Immune Syst. Org. Pathog. Environ., Academic P, Iwama, G., Nakanishi, T, CA, USA, 1996, 105–157.
Lin, S., Mao, S., Guan, Y., Lin, X., Luo, L., Dietary administration of chitooligosaccharides to enhance growth, innate immune response and disease resistance of Trachinotus ovatus. Fish Shellfish Immunol. 32 (2012), 909–913, 10.1016/j.fsi.2012.02.019.
Lin, S., Mao, S., Guan, Y., Luo, L., Luo, L., Pan, Y., Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 342–343 (2012), 36–41, 10.1016/j.aquaculture.2012.02.009.
Abdel-Ghany, H.M., Salem, M.E.S., Effects of dietary chitosan supplementation on farmed fish; a review. Rev. Aquacult. 12 (2020), 438–452, 10.1111/raq.12326.
Abd El-Naby, F.S., Naiel, M.A.E., Al-Sagheer, A.A., Negm, S.S., Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture 501 (2019), 82–89, 10.1016/j.aquaculture.2018.11.014.
Ranjan, R., Prasad, K.P., Vani, T., Kumar, R., Effect of dietary chitosan on haematology, innate immunity and disease resistance of Asian seabass Lates calcarifer (Bloch). Aquacult. Res. 45 (2014), 983–993, 10.1111/are.12050.
Eggestøl, H.Ø., Lunde, H.S., Haugland, G.T., The proinflammatory cytokines TNF-α and IL-6 in lumpfish (Cyclopterus lumpus L.) -identification, molecular characterization, phylogeny and gene expression analyses. Dev. Comp. Immunol., 105, 2020, 103608, 10.1016/j.dci.2020.103608.
Wei, X., Li, B., Wu, L., Yin, X., Zhong, X., Li, Y., Wang, Y., Guo, Z., Ye, J., Interleukin-6 gets involved in response to bacterial infection and promotes antibody production in Nile tilapia (Oreochromis niloticus). Dev. Comp. Immunol. 89 (2018), 141–151, 10.1016/j.dci.2018.08.012.
Piazzon, M.C., Savelkoul, H.F.J., Pietretti, D., Wiegertjes, G.F., Forlenza, M., Carp Il10 has anti-inflammatory activities on phagocytes, promotes proliferation of memory T cells, and regulates B cell differentiation and antibody secretion. J. Immunol. 194 (2015), 187–199, 10.4049/jimmunol.1402093.
Nguyen, T.M., Mandiki, S.N.M., Salomon, J.M.A.J., Baruti, J.B., Thi, N.T.T., Nguyen, T.H., Nhu, T.Q., Kestemont, P., Pro- and anti-inflammatory responses of common carp Cyprinus carpio head kidney leukocytes to E.coli LPS as modified by different dietary plant oils. Dev. Comp. Immunol., 114, 2021, 103828, 10.1016/j.dci.2020.103828.
Yang, J., Yan, H., TLR5: beyond the recognition of flagellin. Cell. Mol. Immunol. 14 (2017), 1017–1019, 10.1038/cmi.2017.122.
He, M., Wang, K., Liang, X., Fang, J., Geng, Y., Chen, Z., Pu, H., Hu, Y., Li, X., Liu, L., Effects of dietary vitamin E on growth performance as well as intestinal structure and function of channel catfish (Ictalurus punctatus, Rafinesque 1818). Exp. Ther. Med., 2017, 10.3892/etm.2017.5295.
Elia, A.C., Capucchio, M.T., Caldaroni, B., Magara, G., Dörr, A.J.M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A., Gasco, L., Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 496 (2018), 50–57, 10.1016/j.aquaculture.2018.07.009.
Chen, Y.-P., Jiang, W.-D., Liu, Y., Jiang, J., Wu, P., Zhao, J., Kuang, S.-Y., Tang, L., Tang, W.-N., Zhang, Y.-A., Zhou, X.-Q., Feng, L., Exogenous phospholipids supplementation improves growth and modulates immune response and physical barrier referring to NF-κB, TOR, MLCK and Nrf2 signaling factors in the intestine of juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 47 (2015), 46–62, 10.1016/j.fsi.2015.08.024.