Chandra X‐ray Observatory; Hubble Space Telescope; Jupiter; aurora; dark polar region; magnetosphere; Aurorae; Auroral structures; Hubble space telescopes; Jupiters; Polar Regions; Ultraviolet emission; X-ray emission; X-rays photons; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] We present 14 simultaneous Chandra X-ray Observatory (CXO)-Hubble Space Telescope (HST) observations of Jupiter's Northern X-ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X-ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X-ray photons. For all 14 observations, the low level of X-ray emission from the DPR is consistent (within 2-standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X-ray-bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X-ray signature.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Dunn, W R ; Mullard Space Science Laboratory University College London Dorking UK ; The Centre for Planetary Science at UCL/Birkbeck London UK
Weigt, D M ; School of Physics and Astronomy University of Southampton Southampton UK ; School of Physics Trinity College Dublin Dublin Ireland
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China ; College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
May, D; Department of Science St. Gilgen International School St. Gilgen Austria
Feigelman, K; Department of Science St. Gilgen International School St. Gilgen Austria
Sipos, B ; Department of Science St. Gilgen International School St. Gilgen Austria
Fleming, D; Department of Science St. Gilgen International School St. Gilgen Austria
McEntee, S; School of Physics Trinity College Dublin Dublin Ireland ; School of Cosmic Physics DIAS Dunsink Observatory Dublin Institute for Advanced Studies Dublin Ireland
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gladstone, G R ; Division of Space Science and Engineering Southwest Research Institute San Antonio TX USA ; Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX USA
Johnson, R E ; Department of Physics Aberystwyth University Ceredigion UK
Jackman, C M ; School of Cosmic Physics DIAS Dunsink Observatory Dublin Institute for Advanced Studies Dublin Ireland
Guo, Ruilong ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Laboratory of Optical Astronomy and Solar-Terrestrial Environment School of Space Science and Physics Institute of Space Sciences Shandong University Weihai China
Branduardi-Raymont, G ; Mullard Space Science Laboratory University College London Dorking UK ; The Centre for Planetary Science at UCL/Birkbeck London UK
Wibisono, A D ; Mullard Space Science Laboratory University College London Dorking UK ; The Centre for Planetary Science at UCL/Birkbeck London UK
Kraft, R P; Harvard-Smithsonian Center for Astrophysics Smithsonian Astrophysical Observatory Cambridge MA USA
Nichols, J D ; Department of Physics and Astronomy University of Leicester Leicester UK
Ray, L C ; Department of Physics Lancaster University Lancaster UK
SFTC - Science and Technology Facilities Council F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The authors greatly thank the NASA Chandra and Hubble Space Telescope Projects for their support. WRD and GBR acknowledge support from STFC consolidated grant ST/S000240/1 to University College London (UCL). DMW is supported by the Science and Technology Facilities Council (STFC) studentship ST/S505703/1 and long‐term attachment grant to work at the Dublin Institute for Advanced Studies (DIAS). ADW was supported by the Science and Technology Facilities Council (STFC) (Project no. 2062546). DG and BB acknowledge the financial support from the Belgian Federal Science Policy Office (BELSPO) via the PRODEX Programme of ESA. BB is a Research Associate of the Fonds de la Recherche Scientifique‐FNRS. ZHY acknowledges the Key Research Program of the Institute of Geology and Geophysics, CAS, Grant no. IGGCAS‐201904. ZHY was supported by National Natural Science Foundation of China grants 42074211 and Key Research Program of the Institute of Geology and Geophysics, CAS, Grant No. IGGCAS‐201904. GRG was supported through NASA funding through contract NNM06AA75C with Southwest Research Institute, San Antonio, TX, USA. CMJ and SMcE work at DIAS are funded by Science Foundation Ireland Grant 18/FRL/6199. WRD would further like to thank the UKSA, UCL Widening Participation, and UCL Astro Group for the funding support for Orbyts. He also greatly thanks N. Achilleos, S. Badman, and D. Moral Pombo for their invaluable discussions and support.
All data presented in this work are publicly available through the Chandra archive (https://cda.harvard.edu/chaser/) and the Hubble Space Telescope data available from the MAST Archive with the approach campaign here: https://archive.stsci.edu/doi/resolve/resolve.html?doi=10.17909/t9-1271-7f52 and observations synchronized with the Juno orbits of Jupiter here: https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634.
Badman, S. V., Provan, G., Bunce, E. J., Mitchell, D. G., Melin, H., Cowley, S. W. H., et al. (2016). Saturn’s auroral morphology and field-aligned currents during a solar wind compression. Icarus, 263, 83–93. https://doi.org/10.1016/j.icarus.2014.11.014
Bhardwaj, A., Branduardi-Raymont, G., Elsner, R. F., Gladstone, G. R., Ramsay, G., Rodriguez, P., et al. (2005). Solar control on Jupiter’s equatorial X-ray emissions: 26-29 November 2003 XMM-Newton observation. Geophysical Research Letters, 32(3), 1–5. https://doi.org/10.1029/2004gl021497
Bhattacharyya, D., Clarke, J. T., Montgomery, J., Bonfond, B., Gérard, J.-C., & Grodent, D. (2018). Evidence for auroral emissions from Callisto's footprint in HST UV images. Journal of Geophysical Research: Space Physics, 123, 364–373. https://doi.org/10.1002/2017ja024791
Bonfond, B., Grodent, D., Badman, S. V., Gérard, J. C., & Radioti, A. (2016). Dynamics of the flares in the active polar region of Jupiter. Geophysical Research Letters, 43(23), 11–96. https://doi.org/10.1002/2016gl071757
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Dols, V., Delamere, P., & Clarke, J. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. Journal of Geophysical Research, 114, A07224. https://doi.org/10.1029/2009ja014312
Bonfond, B., Hess, S., Bagenal, F., Gérard, J.-C., Grodent, D., Radioti, A., et al. (2013). The multiple spots of the ganymede auroral footprint. Geophysical Research Letters, 40, 4977–4981. https://doi.org/10.1002/grl.50989
Branduardi-Raymont, G., Bhardwaj, A., Elsner, R. F., Gladstone, G. R., Ramsay, G., Rodriguez, P., et al. (2007b). Latest results on Jovian disk X-rays from XMM-Newton. Planetary and Space Science, 55(9), 1126–1134. https://doi.org/10.1016/j.pss.2006.11.017
Branduardi-Raymont, G., Bhardwaj, A., Elsner, R. F., Gladstone, G. R., Ramsay, G., Rodriguez, P., et al. (2007a). A study of Jupiter’s aurorae with XMM-Newton. Astronomy & Astrophysics, 463(2), 761–774. https://doi.org/10.1051/0004-6361:20066406
Branduardi-Raymont, G., Elsner, R. F., Galand, M., Grodent, D., Cravens, T. E., Ford, P., et al. (2008). Spectral morphology of the X-ray emission from Jupiter’s aurorae. Journal of Geophysical Research: Space Physics, 113(A2). https://doi.org/10.1029/2007ja012600
Branduardi-Raymont, G., Elsner, R. F., Gladstone, G. R., Ramsay, G., Rodriguez, P., Soria, R., & Waite, J. H. (2004). First observation of Jupiter by XMM-Newton. Astronomy & Astrophysics, 424(1), 331–337. https://doi.org/10.1051/0004-6361:20041149
Bunce, E., Cowley, S., & Yeoman, T. (2004). Jovian cusp processes: Implications for the polar aurora. Journal of Geophysical Research: Space Physics, 109(A9), A09S13. https://doi.org/10.1029/2003ja010280
Chubb, K. L., Joseph, M., Franklin, J., Choudhury, N., Furtenbacher, T., Császár, A. G., et al. (2018). MARVEL analysis of the measured high-resolution rovibrational spectra of C2H2. Journal of Quantitative Spectroscopy and Radiative Transfer, 204, 42–55. https://doi.org/10.1016/j.jqsrt.2017.08.018
Chubb, K. L., Naumenko, O., Keely, S., Bartolotto, S., Macdonald, S., Mukhtar, M., et al. (2018). Marvel analysis of the measured high-resolution rovibrational spectra of H232S. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 178–186. https://doi.org/10.1016/j.jqsrt.2018.07.012
Clark, G., Mauk, B. H., Kollmann, P., Paranicas, C., Bagenal, F., Allen, R. C., & Westlake, J. H. (2020). Heavy ion charge states in Jupiter's polar magnetosphere inferred from auroral megavolt electric potentials. Journal of Geophysical Research: Space Physics, 125(9), e2020JA028052. https://doi.org/10.1029/2020ja028052
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter’s coupled magnetosphere–ionosphere system. Planetary and Space Science, 49(10–11), 1067–1088. https://doi.org/10.1016/s0032-0633(00)00167-7
Cowley, S. W. H., Bunce, E. J., Stallard, T. S., & Miller, S. (2003). Jupiter's polar ionospheric flows: Theoretical interpretation. Geophysical Research Letters, 30(5). https://doi.org/10.1029/2002GL016030
Cravens, T., Waite, J., Gombosi, T., Lugaz, N., Gladstone, G., Mauk, B., & MacDowall, R. (2003). Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. Journal of Geophysical Research: Space Physics, 108(A12), 1465. https://doi.org/10.1029/2003ja010050
Cravens, T. E., Clark, J., Bhardwaj, A., Elsner, R., Waite Jr, J. H., Maurellis, A. N., & Branduardi-Raymont, G. (2006). X-ray emission from the outer planets: Albedo for scattering and fluorescence of solar X rays. Journal of Geophysical Research: Space Physics, 111(A7). https://doi.org/10.1029/2005ja011413
Cravens, T. E., Howell, E., Waite, J., & Gladstone, G. (1995). Auroral oxygen precipitation at Jupiter. Journal of Geophysical Research: Space Physics, 100(A9), 17153–17161. https://doi.org/10.1029/95ja00970
Darby-Lewis, D., Shah, H., Joshi, D., Khan, F., Kauwo, M., Sethi, N., et al. (2019). MARVEL analysis of the measured high-resolution spectra of 14NH. Journal of Molecular Spectroscopy, 362, 69–76. https://doi.org/10.1016/j.jms.2019.06.002
Delamere, P. A., & Bagenal, F. (2010). Solar wind interaction with Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 115(A10). https://doi.org/10.1029/2010ja015347
Dunn, W. R., Branduardi-Raymont, G., Carter-Cortez, V., Campbell, A., Elsner, R., Ness, J.-U., et al. (2020). Jupiter’s X-ray emission during the 2007 solar minimum. Journal of Geophysical Research: Space Physics, 125(6), e2019JA027219. https://doi.org/10.1029/2019ja027219
Dunn, W. R., Branduardi-Raymont, G., Elsner, R. F., Vogt, M. F., Lamy, L., Ford, P. G., et al. (2016). The impact of an ICME on the Jovian X-ray aurora. Journal of Geophysical Research: Space Physics, 121(3), 2274–2307. https://doi.org/10.1002/2015ja021888
Dunn, W. R., Branduardi-Raymont, G., Ray, L. C., Jackman, C. M., Kraft, R. P., Elsner, R. F., et al. (2017). The independent pulsations of Jupiter’s northern and southern X-ray auroras. Nature Astronomy, 1(11), 758–764. https://doi.org/10.1038/s41550-017-0262-6
Dunn, W. R., Gray, R., Wibisono, A. D., Lamy, L., Louis, C., & Badman, S. V. (2020). Comparisons between Jupiter’s X-ray, UV and radio emissions and in-situ solar wind measurements during 2007. Journal of Geophysical Research: Space Physics, 125, e2019JA027222. https://doi.org/10.1029/2019ja027222
Edwards, B., Changeat, Q., Yip, K. H., Tsiaras, A., Taylor, J., Akhtar, B., et al. (2020). Original Research By Young Twinkle Students (ORBYTS): Ephemeris refinement of transiting exoplanets. Monthly Notices of the Royal Astronomical Society.
Elsner, R. F., Gladstone, G. R., Waite, J. H., Crary, F. J., Howell, R. R., Johnson, R. E., et al. (2002). Discovery of soft X-ray emission from Io, Europa, and the Io plasma torus. The Astrophysical Journal, 572(2), 1077–1082. https://doi.org/10.1086/340434
Elsner, R. F., Lugaz, N., Waite, J. H., Jr., Cravens, T. E., Gladstone, G. R., Ford, P., et al. (2005). Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. Journal of Geophysical Research: Space Physics, 110(A1). https://doi.org/10.1029/2004ja010717
Francis, A., Brown, J., Cameron, T., Clarke, R. C., Dodd, R., Hurdle, J., et al. (2020). A multi-annotator survey of sub-km craters on Mars. Data, 5(3), 70. https://doi.org/10.3390/data5030070
French, R., James, A., Baker, D., Dunn, W., Matthews, S., da Silva Pestana, B., et al. (2020). Opening pupils’ eyes to the Sun. Astronomy and Geophysics, 61(6), 6–22. https://doi.org/10.1093/astrogeo/ataa085
Gérard, J. C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., & Levin, S. M. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124(11), 8298–8317.
Gladstone, G., Waite, J., Grodent, D., Lewis, W., Crary, F., Elsner, R. F., et al. (2002). A pulsating auroral X-ray hot spot on Jupiter. Nature, 415(6875), 1000–1003. https://doi.org/10.1038/4151000a
Grafton-Waters, S., Ahmed, M., Henson, S., Hinds-Williams, F., Ivanova, B., Marshall, E., et al. (2021). A study of the soft X-ray emission lines in NGC 4151. I. Kinematic properties of the plasma wind. Research Notes of the AAS, 5(7), 172. https://doi.org/10.3847/2515-5172/ac1689
Greathouse, T., Gladstone, R., Versteeg, M., Hue, V., Kammer, J., Giles, R., et al. (2021). Local time dependence of Jupiter’s polar auroral emissions observed by Juno UVS. Journal of Geophysical Research: Planets, e2021JE006954.
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/978-1-4939-3395-2_3
Grodent, D., Bonfond, B., Gérard, J.-C., Radioti, A., Gustin, J., Clarke, J. T., et al. (2008). Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere. Journal of Geophysical Research, 113, A09201. https://doi.org/10.1029/2008ja013185
Grodent, D., Bonfond, B., Yao, Z., Gérard, J.-C., Radioti, A., Dumont, M., et al. (2018). Jupiter’s aurora observed with HST during Juno orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123(5), 3299–3319.
Grodent, D., Clarke, J., Kim, J., Waite, J., & Cowley, S. (2003). Jupiter’s main auroral oval observed with HST-STIS. Journal of Geophysical Research: Space Physics, 108(A11). https://doi.org/10.1029/2003ja009921
Grodent, D., Clarke, J., Waite, J., Cowley, S., Gérard, J.-C., & Kim, J. (2003). Jupiter’s polar auroral emissions. Journal of Geophysical Research: Space Physics, 108(A10). https://doi.org/10.1029/2003ja010017
Hill, T. (2001). The Jovian auroral oval. Journal of Geophysical Research: Space Physics, 106(A5), 8101–8107. https://doi.org/10.1029/2000ja000302
Holdship, J., Viti, S., Codella, C., Rawlings, J., Jimenez-Serra, I., Ayalew, Y., et al. (2019). Observations of CH3OH and CH3CHO in a sample of protostellar outflow sources. The Astrophysical Journal, 880(2), 138. https://doi.org/10.3847/1538-4357/ab1f8f
Houston, S., Cravens, T., Schultz, D., Gharibnejad, H., Dunn, W., Haggerty, D., et al. (2020). Jovian auroral ion precipitation: X-ray production from oxygen and sulfur precipitation. Journal of Geophysical Research: Space Physics, 125(2), e2019JA027007. https://doi.org/10.1029/2019ja027007
Hue, V., Greathouse, T. K., Bonfond, B., Saur, J., Gladstone, G. R., Roth, L., et al. (2019). Juno-UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research: Space Physics, 124(7), 5184–5199. https://doi.org/10.1029/2018ja026431
Jackman, C. M., Knigge, C., Altamirano, D., Gladstone, R., Dunn, W., Elsner, R., et al. (2018). Assessing quasi-periodicities in Jovian X-ray emissions: Techniques and heritage survey. Journal of Geophysical Research: Space Physics, 123(11), 9204–9221. https://doi.org/10.1029/2018ja025490
Johnson, R. E., Melin, H., Stallard, T. S., Tao, C., Nichols, J. D., & Chowdhury, M. N. (2018). Mapping H3+ temperatures in Jupiter’s northern auroral ionosphere using VLT-CRIRES. Journal of Geophysical Research: Space Physics, 123(7), 5990–6008. https://doi.org/10.1029/2018ja025511
Johnson, R. E., Stallard, T. S., Melin, H., Nichols, J. D., & Cowley, S. W. (2017). Jupiter’s polar ionospheric flows: High resolution mapping of spectral intensity and line-of-sight velocity of H3+ ions. Journal of Geophysical Research: Space Physics, 122(7), 7599–7618. https://doi.org/10.1002/2017ja024176
Kharchenko, V., Bhardwaj, A., Dalgarno, A., Schultz, D. R., & Stancil, P. C. (2008). Modeling spectra of the north and south Jovian X-ray auroras. Journal of Geophysical Research: Space Physics, 113(A8). https://doi.org/10.1029/2008ja013062
Kimura, T., Badman, S., Tao, C., Yoshioka, K., Murakami, G., Yamazaki, A., et al. (2015). Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope. Geophysical Research Letters, 42, 1662–1668. https://doi.org/10.1002/2015gl063272
Kimura, T., Kraft, R. P., Elsner, R. F., Branduardi-Raymont, G., Gladstone, G. R., Tao, C., et al. (2016). Jupiter's X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite. Journal of Geophysical Research: Space Physics, 121(3), 2308–2320. https://doi.org/10.1002/2015ja021893
Kotsiaros, S., Connerney, J. E., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., et al. (2019). Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3(10), 904–909. https://doi.org/10.1038/s41550-019-0819-7
Masters, A., Dunn, W. R., Stallard, T. S., Manners, H., & Stawarz, J. (2021). Magnetic reconnection near the planet as a possible driver of Jupiter’s mysterious polar auroras. Journal of Geophysical Research: Space Physics, 126(8), e2021JA029544. https://doi.org/10.1029/2021ja029544
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter's polar cap and main aurora: A broad overview. Journal of Geophysical Research: Space Physics, 125(3), e2019JA027699. https://doi.org/10.1029/2019ja027699
Mauk, B. H., Clarke, J., Grodent, D., Waite, J., Paranicas, C., & Williams, D. (2002). Transient aurora on Jupiter from injections of magnetospheric electrons. Nature, 415(6875), 1003–1005. https://doi.org/10.1038/4151003a
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017b). Discrete and broadband electron acceleration in Jupiter’s powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017a). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44(10), 4410–4418. https://doi.org/10.1002/2016gl072286
Maurellis, A. N., Cravens, T. E., Gladstone, G. R., Waite, J. H., & Acton, L. W. (2000). Jovian X-ray emission from solar X-ray scattering. Geophysical Research Letters, 27(9), 1339–1342. https://doi.org/10.1029/1999gl010723
McKemmish, L. K., Borsovszky, J., Goodhew, K. L., Sheppard, S., Bennett, A. F., Martin, A. D., et al. (2018). Marvel analysis of the measured high-resolution rovibronic spectra of 90Zr16O. The Astrophysical Journal, 867(1), 33. https://doi.org/10.3847/1538-4357/aadd19
McKemmish, L. K., Masseron, T., Sheppard, S., Sandeman, E., Schofield, Z., Furtenbacher, T., et al. (2017). MARVEL analysis of the measured high-resolution rovibronic spectra of 48Ti16O. The Astrophysical Journal - Supplement Series, 228(2), 15. https://doi.org/10.3847/1538-4365/228/2/15
Nichols, J., Badman, S. V., Bagenal, F., Bolton, S., Bonfond, B., Bunce, E., et al. (2017). Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. https://doi.org/10.1002/2017gl073029
Nichols, J., Clarke, J., Gérard, J.-C., Grodent, D., & Hansen, K. (2009). Variation of different components of Jupiter’s auroral emission. Journal of Geophysical Research: Space Physics(A6), 114.
Nulsen, S., Kraft, R., Germain, G., Dunn, W., Tremblay, G., Beegle, L., et al. (2020). X-ray emission from Jupiter’s Galilean moons: A tool for determining their surface composition and particle environment. The Astrophysical Journal, 895(2), 79. https://doi.org/10.3847/1538-4357/ab8cbc
Stallard, T. S., Clarke, J. T., Melin, H., Miller, S., Nichols, J. D., O’Donoghue, J., et al. (2016). Stability within Jupiter’s polar auroral ‘Swirl region’ over moderate timescales. Icarus, 268, 145–155. https://doi.org/10.1016/j.icarus.2015.12.044
Stallard, T. S., Miller, S., Cowley, S., & Bunce, E. (2003). Jupiter’s polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval. Geophysical Research Letters, 30(5). https://doi.org/10.1029/2002gl016031
Swithenbank-Harris, B. G., Nichols, J. D., & Bunce, E. J. (2019). Jupiter’s dark polar region as observed by the Hubble space telescope during the Juno approach phase. Journal of Geophysical Research: Space Physics, 124(11), 9094–9105.
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., et al. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123(11), 3061–3077. https://doi.org/10.1029/2018JE005752
Von Steiger, R., Schwadron, N., Fisk, L., Geiss, J., Gloeckler, G., Hefti, S., et al. (2000). Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. Journal of Geophysical Research, 105(A12), 27217–27238. https://doi.org/10.1029/1999ja000358
Waite, J. H., Gladstone, G. R., Lewis, W. S., Goldstein, R., McComas, D. J., Riley, P., et al. (2001). An auroral flare at Jupiter. Nature, 410(6830), 787–789. https://doi.org/10.1038/35071018
Weigt, D. M., Jackman, C. M., Dunn, W., Gladstone, G., Vogt, M., Wibisono, A., et al. (2020). Chandra observations of Jupiter’s X-ray auroral emission during Juno Apojove 2017. Journal of Geophysical Research: Planets, 125(4). https://doi.org/10.1029/2019je006262
Weigt, D. M., Jackman, C. M., Vogt, M. F., Manners, H., Dunn, W. R., Gladstone, G. R., et al. (2021). Characteristics of Jupiter’s X-ray auroral hot spot emissions using Chandra. Journal of Geophysical Research: Space Physics, 126(9), e2021JA029243. https://doi.org/10.1029/2021ja029243
Wibisono, A. D., Branduardi-Raymont, G., Dunn, W. R., Coates, A. J., Weigt, D. M., Jackman, C. M., et al. (2020). Temporal and spectral studies by XMM-Newton of Jupiter’s X-ray auroras during a compression event. Journal of Geophysical Research: Space Physics, 125(5), e2019JA027676. https://doi.org/10.1029/2019ja027676
Wibisono, A. D., Branduardi-Raymont, G., Dunn, W. R., Kimura, T., Coates, A. J., Grodent, D., et al. (2021). Jupiter’s X-ray aurora during UV dawn storms and injections as observed by XMM-Newton, Hubble, and Hisaki. Monthly Notices of the Royal Astronomical Society.
Yao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., et al. (2020). Reconnection- and dipolarization-driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125(8), e2019JA027663. https://doi.org/10.1029/2019ja027663
Yao, Z. H., Dunn, W. R., Woodfield, E. E., Clark, G., Mauk, B. H., Ebert, R. W., et al. (2021). Revealing the source of Jupiter’s x-ray auroral flares. Science Advances, 7(28), eabf0851. https://doi.org/10.1126/sciadv.abf0851
Yao, Z. H., Grodent, D., Kurth, W. S., Clark, G., Mauk, B. H., Kimura, T., et al. (2019). On the relation between Jovian aurorae and the loading/unloading of the magnetic flux: Simultaneous measurements from Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 46(21), 11632–11641. https://doi.org/10.1029/2019gl084201
Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A., et al. (2021). How Jupiter’s unusual magnetospheric topology structures its aurora. Science Advances, 7(15), eabd1204. https://doi.org/10.1126/sciadv.abd1204