Pilla, R.M.; Department of Biology, Miami University, Oxford, OH, United States
Williamson, C.E.; Department of Biology, Miami University, Oxford, OH, United States
Adamovich, B.V.; Faculty of Biology, Belarusian State University, Minsk, Belarus
Adrian, R.; Department of Ecosystems Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany, Freie Universität Berlin, Berlin, Germany
Anneville, O.; CARRTEL, INRAE, Thonon-les-Bains, France
Chandra, S.; Global Water Center, University of Nevada, Reno, NV, United States
Colom-Montero, W.; Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
Devlin, S.P.; Flathead Lake Biological Station, University of Montana, Polson, MT, United States
Dix, M.A.; Instituto de Investigacones, Universidad del Valle de Guatemala, Guatemala, Guatemala
Dokulil, M.T.; Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
Gaiser, E.E.; Department of Biological Sciences, Florida International University, Miami, FL, United States
Girdner, S.F.; Crater Lake National Park, U.S. National Park Service, Crater Lake, OR, United States
Hambright, K.D.; Department of Biology, Plankton Ecology and Limnology Lab and Geographical Ecology Group, University of Oklahoma, Norman, OK, United States
Hamilton, D.P.; Australian Rivers Institute, Griffith University, Nathan, Australia
Havens, K.; Florida Sea Grant and UF/IFAS, University of Florida, Gainesville, FL, United States
Hessen, D.O.; Department of Biosciences, University of Oslo, Oslo, Norway
Higgins, S.N.; IISD Experimental Lake Area Inc, Winnipeg, MB, Canada
Huttula, T.H.; Freshwater Center, Finnish Environment Institute SYKE, Helsinki, Finland
Huuskonen, H.; Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
Isles, P.D.F.; Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Joehnk, K.D.; Land and Water, CSIRO, Canberra, Australia
Jones, I.D.; Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
Keller, W.B.; Cooperative Freshwater Ecology Unit, Laurentian University, Ramsey Lake Road, Sudbury, ON, Canada
Knoll, L.B.; Itasca Biological Station and Laboratories, University of Minnesota, Lake Itasca, MN, United States
Korhonen, J.; Freshwater Center, Finnish Environment Institute SYKE, Helsinki, Finland
Kraemer, B.M.; Department of Ecosystems Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Leavitt, P.R.; Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada, Institute for Global Food Security, Queen’s University Belfast, Belfast Co., Antrim, United Kingdom
Lepori, F.; Department for Environment, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland, Canobbio, Switzerland
Luger, M.S.; Federal Agency for Water Management AT, Mondsee, Austria
Maberly, S.C.; Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster, United Kingdom
Melack, J.M.; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States
Melles, S.J.; Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
Müller-Navarra, D.C.; Department of Biology, University of Hamburg, Hamburg, Germany
Pierson, D.C.; Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
Pislegina, H.V.; Institute of Biology, Irkutsk State University, Irkutsk, Russian Federation
Plisnier, Pierre-Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Richardson, D.C.; Department of Biology, SUNY New Paltz, New Paltz, NY, United States
Rimmer, A.; The Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
Rogora, M.; CNR Water Research Institute, Verbania Pallanza, Italy
Rusak, J.A.; Dorset Environmental Science Centre, Ontario Ministry of the Environment, Conservation, and Parks, Dorset, ON, Canada
Sadro, S.; Department of Environmental Science and Policy, University of California Davis, Davis, CA, United States
Salmaso, N.; Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele All’Adige, Italy
Saros, J.E.; Climate Change Institute, University of Maine, Orono, ME, United States
Saulnier-Talbot, É.; Centre D’Études Nordiques, Université Laval, Québec, QC, Canada
Schindler, D.E.; School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
Schmid, M.; Surface Waters-Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Shimaraeva, S.V.; Institute of Biology, Irkutsk State University, Irkutsk, Russian Federation
Silow, E.A.; Institute of Biology, Irkutsk State University, Irkutsk, Russian Federation
Sitoki, L.M.; Department of Geosciences and the Environment, The Technical University of Kenya, Nairobi, Kenya
Sommaruga, R.; Department of Ecology, University of Innsbruck, Innsbruck, Austria
Straile, D.; Limnological Institute, University of Konstanz, Konstanz, Germany
Strock, K.E.; Department of Environmental Science, Dickinson College, Carlisle, PA, United States
Thiery, W.; Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium, Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
Timofeyev, M.A.; Institute of Biology, Irkutsk State University, Irkutsk, Russian Federation
Verburg, P.; National Institute of Water and Atmospheric Research, Hamilton, New Zealand
Vinebrooke, R.D.; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
Weyhenmeyer, G.A.; Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
Zadereev, E.; Institute of Biophysics, Krasnoyarsk Scientific Center Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
Publication date :
2020
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Research
Volume :
10
Issue :
1
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This work was conceived at the Global Lake Ecological Observatory Network (GLEON), and benefited from continued participation and travel support from GLEON. This manuscript is dedicated to the late Alon Rimmer and Karl Havens, who provided data and contributed to earlier versions of this manuscript. Funding in support of this work came from the following sources: Belarus Republican Foundation for Fundamental Research; IGB Long-Term Research; the European Commission within the MANTEL project; the DFG within the LimnoScenES project (AD 91/22-1); OLA-IS, AnaEE-France, INRAE of Thonon-les-Bains, CIPEL, SILA, CISALB; Universidad del Valle de Guatemala; Archbold Biological Station; the Oklahoma Department of Wildlife Conservation, the Oklahoma Water Resources Board, the Grand River Dam Authority, the US Army Corps of Engineers, and the City of Tulsa; the Ministry of Business, Innovation, and Employment (UOW X1503); the Natural Environment Research Council of the UK; the IGB’s International Postdoctoral Fellowship; NSERC, Canada Foundation for Innovation, Canada Research Chairs, Province of Saskatchewan; University of Regina; Queen’s University Belfast; Natural Environment Research Council; US-NSF, California Air Resources Board, NASA, and US National Park Service; the Ministry of Higher Education and Research (projects № FZZE-2020-0026; № FZZE-2020-0023) and RSCF 20-64-46003; US National Science Foundation Long Term Research in Environmental Biology program (DEB-1242626); the Environmental Agency of Verona; US National Science Foundation, the Gordon and Betty Moore Foundation, the Mellon Foundation, and the University of Washington; KMFRI, LVEMP, University of Innsbruck, OeAD, IFS, and LVFO-EU; Waikato Regional Council and Bay of Plenty Regional Council; Swedish Environmental Protection Agency and the Swedish Infrastructure for Ecosystem Sciences; US National Science Foundation grants DEB-1754276 and DEB-1950170. We thank J. Klug, P. McIntyre, H. Swain, K. Tominaga, A. Voutilainen, and L. Winslow for their feedback on early drafts that substantially improved this manuscript. Additional detailed acknowledgements can be found in the Supplementary Information online.
Hambright, K. D., Gophen, M. & Serruya, S. Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnol. Oceanogr. 39, 1233–1242 (1994). DOI: 10.4319/lo.1994.39.5.1233
Pilla, R. M. et al. Browning-related decreases in water transparency lead to long-term increases in surface water temperature and thermal stratification in two small lakes. J. Geophys. Res. Biogeo. 10.1029/2017JG004321 (2018). DOI: 10.1029/2017JG004321
Foley, B., Jones, I. D., Maberly, S. C. & Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: Effects of climate change and eutrophication. Freshwater Biol. 57, 278–289 (2012). DOI: 10.1111/j.1365-2427.2011.02662.x
Knoll, L. B. et al. Browning-related oxygen depletion in an oligotrophic lake. Inland Waters 10.1080/20442041.2018.1452355 (2018). DOI: 10.1080/20442041.2018.1452355
O’Reilly, C. M., Alin, S. R., Plisnier, P.-D., Cohen, A. S. & McKee, B. A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika Africa. Nature 424, 766–768 (2003). DOI: 10.1038/nature01833
Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003). DOI: 10.1126/science.1084846
Saulnier-Talbot, É. et al. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes. PLoS ONE 10.1371/journal.pone.0086561 (2014). DOI: 10.1371/journal.pone.0086561
Cohen, A. S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. P. Natl. Acad. Sci. 113, 9563–9568 (2016). DOI: 10.1073/pnas.1603237113
Hansen, G. J. A., Read, J. S., Hansen, J. F. & Winslow, L. A. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Glob. Change Biol. 23, 1463–1476 (2017). DOI: 10.1111/gcb.13462
De Stasio, B. T., Hill, D. K., Kleinhans, J. M., Nibbelink, N. P. & Magnuson, J. J. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnol. Oceanogr. 41, 1136–1149 (1996). DOI: 10.4319/lo.1996.41.5.1136
Craig, N., Jones, S. E., Weidel, B. C. & Solomon, C. T. Habitat, not resource availability, limits consumer production in lake ecosystems. Limnol. Oceanogr. 60, 2079–2089 (2015). DOI: 10.1002/lno.10153
Brothers, S. et al. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol. Oceanogr. 59, 1388–1398 (2014). DOI: 10.4319/lo.2014.59.4.1388
Marotta, H. et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Change 10.1038/NCLIMATE2222 (2014). DOI: 10.1038/NCLIMATE2222
Schneider, P. & Hook, S. J. Space observations of inland water bodies show rapid surface warming since. Geophys. Res. Lett. 10.1029/2010GL045059 (2010). DOI: 10.1029/2010GL045059
O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 10.1002/2015GL066235 (2015). DOI: 10.1002/2015GL066235
Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 10.1038/s41561-019-0322-x (2019). DOI: 10.1038/s41561-019-0322-x
Kraemer, B. M. et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. 10.1002/2015GL064097 (2015). DOI: 10.1002/2015GL064097
Keller, W., Heneberry, J. & Leduc, J. Linkages between weather, dissolved, organic carbon, and cold-water habitat in a Boreal Shield lake recovering from acidification. Can. J. Fish. Aquat. Sci. 62, 341–347 (2005). DOI: 10.1139/f04-192
Wagner, A., Volkmann, S. & Dettinger-Klemm, P. M. A. Benthic-pelagic coupling in lake ecosystems: The key role of chironomid pupae as prey of pelagic fish. Ecosphere 10.1890/ES11-00181.1 (2012). DOI: 10.1890/ES11-00181.1
Straile, D., Kerimoglu, O. & Peeters, F. Trophic mismatch requires seasonal heterogeneity of warming. Ecology 96, 2794–2805 (2015). DOI: 10.1890/14-0839.1
Schmid, M. & Köster, O. Excess warming of a Central European lake driven by solar brightening. Water Resour. Res. 10.1002/2016WR018651 (2016). DOI: 10.1002/2016WR018651
Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D. & Laas, A. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Clim. Change 141, 759–773 (2017). DOI: 10.1007/s10584-017-1909-0
Read, J. S. & Rose, K. C. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol. Oceanogr. 58, 921–931 (2013). DOI: 10.4319/lo.2013.58.3.0921
Winslow, L. A., Read, J. S., Hansen, G. J. A. & Hanson, P. C. Small lakes show muted climate change signal in deepwater temperatures. Geophys. Res. Lett. 10.1002/2014GL062325 (2015). DOI: 10.1002/2014GL062325
Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995). DOI: 10.4319/lo.1995.40.8.1381
Fee, E. J., Hecky, R. E., Kasian, S. E. M. & Cruikshank, D. R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 41, 912–920 (1996). DOI: 10.4319/lo.1996.41.5.0912
Snucins, E. & Gunn, J. Interannual variation in the thermal structure of clear and colored lakes. Limnol. Oceanogr. 45, 1639–1646 (2000). DOI: 10.4319/lo.2000.45.7.1639
Jankowski, T., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006). DOI: 10.4319/lo.2006.51.2.0815
Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006). DOI: 10.4319/lo.2006.51.5.2388
Maberly, S. C. et al. Global lake thermal regions shift under climate change. Nat. Commun. 11, 1232. 10.1038/s41467-020-15108-z (2020). DOI: 10.1038/s41467-020-15108-z
IPCC In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 10.1038/NCLIMATE2563 (2015). DOI: 10.1038/NCLIMATE2563
Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 10.1002/lol2.10027 (2016). DOI: 10.1002/lol2.10027
Benson, B. J. et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Change 112, 299–323 (2012). DOI: 10.1007/s10584-011-0212-8
Sharma, S. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change 10.1038/s41558-018-0393-5 (2019). DOI: 10.1038/s41558-018-0393-5
Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth. Environ. 1, 388–403 (2020). DOI: 10.1038/s43017-020-0067-5
Zhang, G. et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth Sci. Rev. 10.1016/j.earscirev.2020.103269 (2020). DOI: 10.1016/j.earscirev.2020.103269
Dokulil, M. T. et al. Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol. Oceanogr. 51, 2787–2793 (2006). DOI: 10.4319/lo.2006.51.6.2787
Ficker, H., Luger, M. & Gassner, H. From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw. Biol. 10.1111/fwb.12946 (2017). DOI: 10.1111/fwb.12946
Markfort, C. D. et al. Wind sheltering of a lake by a tree canopy or bluff topography. Water Resour. Res. 10.1029/2009WR007759 (2010). DOI: 10.1029/2009WR007759
Read, J. S. et al. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys. Res. Lett. 10.1029/2012GL051886 (2012). DOI: 10.1029/2012GL051886
Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997). DOI: 10.1023/A:1005380714349
Sommaruga-Wögrath, S. et al. Temperature effects on the acidity of remote alpine lakes. Nature 387, 64–67 (1997). DOI: 10.1038/387064a0
Václavík, T., Lautenback, S., Kuemmerle, T. & Seppelt, R. Mapping global land system archetypes. Glob. Environ. Change 10.1016/j.gloenvcha.2013.09.004 (2013). DOI: 10.1016/j.gloenvcha.2013.09.004
Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. 10.1002/lol2.10117 (2019). DOI: 10.1002/lol2.10117
Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. 10.1038/srep18666 (2015). DOI: 10.1038/srep18666
Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T. & Cresser, M. S. Alternative explanations for rising dissolved organic carbon export from organic soils. Glob. Change Biol. 12, 2044–2053 (2006). DOI: 10.1111/j.1365-2486.2006.01241.x
Monteith, D. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 10.1038/nature06316 (2007). DOI: 10.1038/nature06316
Couture, S., Houle, D. & Gagnon, C. Increases of dissolved organic carbon in temperate and boreal lakes in Quebec Canada. Environ. Sci. Pollut. Res. 19, 361–371 (2012). DOI: 10.1007/s11356-011-0565-6
Read, J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 26, 1325–1336 (2011). DOI: 10.1016/j.envsoft.2011.05.006
Gray, E., Mackay, E. B., Elliot, J. A., Folkard, A. M. & Jones, I. D. Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes. Water Res. 10.1016/j.watres.2019.115136 (2020). DOI: 10.1016/j.watres.2019.115136
Prokopkin, I. G. & Zadereev, E. S. A model study of the effect of weather forcing on the ecology of a meromictic Siberian Lake. J. Oceanol. Limnol. 36, 2018–2032 (2018). DOI: 10.1007/s00343-018-7329-9
Austin, J. A. & Colman, S. M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 10.1029/2006GL029021 (2007). DOI: 10.1029/2006GL029021
Preston, D. L. et al. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophys. Res. Lett. 10.1002/2016GL069036 (2016). DOI: 10.1002/2016GL069036
Sadro, S., Melack, J. M., Sickman, J. O. & Skeen, K. Climate warming response of mountain lakes affected by variations in snow. Limnol. Oceanogr. Lett. 10.1002/lol2.10099 (2018). DOI: 10.1002/lol2.10099
Zhang, G. et al. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos. 119, 8552–8567 (2014). DOI: 10.1002/2014JD021615
Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375, 601–612 (2009). DOI: 10.1016/j.jhydrol.2009.07.009
Zhang, X. Conjunctive surface water and groundwater management under climate change. Front. Environ. Sci. 10.3389/fenvs.2015.00059 (2015). DOI: 10.3389/fenvs.2015.00059
Gaiser, E. E., Deyrup, N. D., Bachmann, R. W., Battoe, L. E. & Swain, H. M. Effects of climate variability on transparency and thermal structure in subtropical, monomictic Lake Annie Florida. Fund. Appl. Limnol. 175, 217–230 (2009). DOI: 10.1127/1863-9135/2009/0175-0217
Zhang, J. et al. Long-term patterns of dissolved organic carbon in lakes across eastern Canada: Evidence of a pronounced climate effect. Limnol. Oceanogr. 55, 30–42 (2010). DOI: 10.4319/lo.2010.55.1.0030
Williamson, C. E. et al. Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102–109 (2016). DOI: 10.1002/fee.1228
Thiery, W. et al. Understanding the performance of the Flake model over two African Great Lakes. Geosci. Model Dev. 7, 317–337 (2014). DOI: 10.5194/gmd-7-317-2014
Shatwell, T., Thiery, W. & Kirillin, G. Future projections of temperature and mixing regime of European temperate lakes. Hydrol. Earth Syst. Sci. 23, 1533–1551 (2019). DOI: 10.5194/hess-23-1533-2019
Winslow, L. A., Read, J. S., Hansen, G. J. A., Rose, K. C. & Robertson, D. M. Seasonality of change: summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol. Oceanogr. 62, 2168–2178 (2017). DOI: 10.1002/lno.10557
Fang, X. & Stefan, H. G. Simulations of climate effects on water temperatures, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol. Oceanogr. 54, 2359–2370 (2009). DOI: 10.4319/lo.2009.54.6_part_2.2359
Rösner, R., Müller-Navarra, D. C. & Zorita, E. Trend analysis of weekly temperatures and oxygen concentrations during summer stratification in Lake Plußsee: a long-term study. Limnol. Oceanogr. 57, 1479–1491 (2012). DOI: 10.4319/lo.2012.57.5.1479
Rogora, M. et al. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824, 33–50 (2018). DOI: 10.1007/s10750-018-3623-y
Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008). DOI: 10.1111/j.1365-2427.2008.01980.x
North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 10.1111/gcb.12371 (2014). DOI: 10.1111/gcb.12371
Zadereev, E. S., Tolomeev, A. P., Drobotov, A. V. & Kolmakova, A. A. Impact of weather variability on spatial and seasonal dynamics of dissolved and suspended nutrients in water column of meromictic Lake Shira. Contemp. Probl. Ecol. 21, 515–530 (2014).
Couture, R.-M., deWit, H. A., Tominaga, K., Kiuru, P. & Markelov, I. Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs. J. Geophys. Res. Biogeo. 10.1002/2015JG003065 (2015). DOI: 10.1002/2015JG003065
Richardson, D. C. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (1975–2004). Water 10.3390/w9060442 (2017). DOI: 10.3390/w9060442
Kalff, J. Limnology: Inland Water Ecosystems (Prentice Hall, Upper Saddle River, 2002).
Wetzel, R. G. Limnology: Lake and River Ecosystems (Academic Press, New York, 2001).
Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE 10.1371/journal.pone.0152466 (2016). DOI: 10.1371/journal.pone.0152466
Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridge, J. K. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011). DOI: 10.4319/lo.2011.56.5.1603
Winslow, L. et al. rLakeAnalyzer: Lake physics tools. R package version 1.11.4.1. https://CRAN.R-project.org/package=rLakeAnalyzer (2019).
Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968). DOI: 10.1080/01621459.1968.10480934
Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982). DOI: 10.1029/WR018i001p00107
Jassby, A. D. & Cloern, J. E. wq: Some tools for exploring water quality monitoring data. R package version 0.4.8. https://cran.r-project.org/package=wq (2016).
Leach, T. H. et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: the relative importance of light and thermal stratification. Limnol. Oceanogr. 63, 628–646 (2018). DOI: 10.1002/lno.10656
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). DOI: 10.1023/A:1010933404324
James, G., Witten, D., Hastie, T. & Tibshirani, R. Tree-based methods. In An Introduction to Statistical Learning: With Applications in R (Springer, Berlin, 2015).
Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recogn. Lett. 31, 2225–2236 (2010). DOI: 10.1016/j.patrec.2010.03.014
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 027–046 (2013). DOI: 10.1111/j.1600-0587.2012.07348.x
Auret, L. & Alrich, C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner. Eng. 35, 27–42 (2012). DOI: 10.1016/j.mineng.2012.05.008
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
R Core Team. R: a language and environment for statistical computing, R Foundation for Statistical Computing. https://www.R-project.org/ (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016). DOI: 10.1007/978-3-319-24277-4