Klug, J.; Fairfield University, Biology Department, Fairfield, CT, United States
Knoll, L.B.; University of Minnesota, Itasca Biological Station and Laboratories, Lake Itasca, MN, United States
Korhonen, J.; Finnish Environment Institute SYKE, Freshwater Center, Helsinki, Finland
Korovchinsky, N.M.; A.N. Severtsov Institute of Ecology and Evolution of The Russian Academy of Sciences, Laboratory of Ecology of Water Communities and Invasions, Moscow, Russian Federation
Köster, O.; Zurich Water Supply, City of Zurich, Zurich, Switzerland
Kraemer, B.M.; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecosystem Research, Berlin, Germany
Leavitt, P.R.; University of Regina, Institute of Environmental Change and Society, Regina, SK, Canada
Lepori, F.; University of Applied Sciences and Arts of Southern Switzerland, Department for Environment, Constructions and Design, Canobbio, Switzerland
Lepskaya, E.V.; Kamchatka Research Institute of Fisheries & Oceanography, now Kamchatka Branch of Russian Federal Research Institute of Fisheries and Oceanography, Petropavlovsk-Kamchatsky, Russian Federation
Lottig, N.R.; University of Wisconsin, Center for Limnology, Boulder Junction, WI, United States
Luger, M.S.; Federal Agency for Water Management, Institute for Aquatic Ecology and Fisheries Management, Mondsee, Austria
Maberly, S.C.; UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster, United Kingdom
MacIntyre, S.; University of California Santa Barbara, Department of Ecology, Evolution and Marine Biology, Santa Barbara, California, United States
McBride, C.; University of Waikato, Environmental Research Institute, Hamilton, New Zealand
McIntyre, P.; University of Wisconsin, Center for Limnology, Boulder Junction, WI, United States
Melles, S.J.; Ryerson University, Department of Chemistry and Biology, Toronto, ON, Canada
Modenutti, B.; University of Comahue: INIBIOMA, CONICET, Neuquén, Argentina
Müller-Navarra, D.C.; University of Hamburg, Department of Biology, Hamburg, Germany
Paterson, A.M.; Ontario Ministry of the Environment, Conservation and Parks, Dorset Environmental Science Centre, Dorset, ON, Canada
Pierson, D.C.; Uppsala University, Department of Ecology and Genetics/Limnology, Uppsala, Sweden
Pislegina, H.V.; Irkutsk State University, Institute of Biology, Irkutsk, Russian Federation
Plisnier, Pierre-Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Richardson, D.C.; SUNY New Paltz, Biology Department, New Paltz, NY, United States
Rimmer, A.; The Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
Rogora, M.; CNR Water Research institute, Verbania, Verbania, Pallanza, Italy
Rogozin, D.Y.; Krasnoyarsk Scientific Center SB RAS, Institute of Biophysics, Krasnoyarsk, Russian Federation
Rusak, J.A.; Ontario Ministry of the Environment, Conservation and Parks, Dorset Environmental Science Centre, Dorset, ON, Canada
Rusanovskaya, O.O.; Irkutsk State University, Institute of Biology, Irkutsk, Russian Federation
Sadro, S.; University of California Davis, Department of Environmental Science and Policy, Davis, CA, United States
Salmaso, N.; Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Italy
Saros, J.E.; University of Maine, Climate Change Institute, Orono, ME, United States
Sarvala, J.; University of Turku, Turku, Finland
Saulnier-Talbot, É.; Université Laval, Departments of Biology and Geography, Québec, Canada
Schindler, D.E.; University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, United States
Shimaraeva, S.V.; Irkutsk State University, Institute of Biology, Irkutsk, Russian Federation
Silow, E.A.; Irkutsk State University, Institute of Biology, Irkutsk, Russian Federation
Sitoki, L.M.; The Technical University of Kenya, Department of Geosciences and the Environment, Nairobi, Kenya
Sommaruga, R.; University of Innsbruck, Department of Ecology, Innsbruck, Austria
Straile, D.; University of Konstanz, Limnological Institute, Konstanz, Germany
Strock, K.E.; Dickinson College, Department of Environmental Science, Carlisle, PA, United States
Swain, H.; Archbold Biological Station, Venus, FL, United States
Tallant, J.M.; University of Michigan, Biological Station, Pellston, MI, United States
Thiery, W.; Vrije Universiteit Brussel, Department of Hydrology and Hydraulic Engineering, Brussels, Belgium, ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland
Timofeyev, M.A.; Irkutsk State University, Institute of Biology, Irkutsk, Russian Federation
Tolomeev, A.P.; Krasnoyarsk Scientific Center SB RAS, Institute of Biophysics, Krasnoyarsk, Russian Federation
Tominaga, K.; University of Oslo, Department of Biosciences, Oslo, Norway
Vanni, M.J.; Miami University, Department of Biology, Oxford, OH, United States
Verburg, P.; National Institute of Water & Atmospheric Research, Hamilton, New Zealand
Vinebrooke, R.D.; University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
Wanzenböck, J.; University of Innsbruck, Research Department for Limnology Mondsee, Mondsee, Austria
Weathers, K.; Cary Institute of Ecosystem Studies, Millbrook, NY, United States
Weyhenmeyer, G.A.; Uppsala University, Department of Ecology and Genetics/Limnology, Uppsala, Sweden
Zadereev, E.S.; Krasnoyarsk Scientific Center SB RAS, Institute of Biophysics, Krasnoyarsk, Russian Federation
Zhukova, T.V.; Belarusian State University, Faculty of Biology, Minsk, Belarus
Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009). DOI: 10.4319/lo.2009.54.6_part_2.2283
Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54, 2273–2282 (2009). DOI: 10.4319/lo.2009.54.6_part_2.2273
Schneider, P. & Hook, S. J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 37, 1–5 (2010). DOI: 10.1029/2010GL045059
O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 1–9 (2015). DOI: 10.1002/2014GL062453
Kraemer, B. M. et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. 42, 1–8 (2015). DOI: 10.1002/2015GL064097
Richardson, D. C. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (1975-2014). Water 9, 1–22 (2017). DOI: 10.3390/w9060442
Pilla, R. M. et al. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci. Rep. 10, 20514 (2020). DOI: 10.1038/s41598-020-76873-x
Pilla, R. M. et al. Browning-related decreases in water transparency lead to long-term increases in surface water temperature and thermal stratification in two small lakes. J. Geophys. Res. Biogeo. 123, 1651–1665 (2018). DOI: 10.1029/2017JG004321
Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019). DOI: 10.1038/s41561-019-0322-x
Foley, B., Jones, I. D., Maberly, S. C. & Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: Effects of climate change and eutrophication. Freshwater Biol. 57, 278–289 (2012). DOI: 10.1111/j.1365-2427.2011.02662.x
Knoll, L. B. et al. Browning-related oxygen depletion in an oligotrophic lake. Inland Waters 8, 255–263 (2018). DOI: 10.1080/20442041.2018.1452355
Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003). DOI: 10.1126/science.1084846
De Stasio, B. T., Hill, D. K., Kleinhans, J. M., Nibbelink, N. P. & Magnuson, J. J. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnol. Oceanogr. 41, 1136–1149 (1996). DOI: 10.4319/lo.1996.41.5.1136
Cohen, A. S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. P. Natl. Acad. Sci. 113, 9563–9568 (2016). DOI: 10.1073/pnas.1603237113
Hansen, G. J. A., Read, J. S., Hansen, J. F. & Winslow, L. A. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Glob. Change Biol. 23, 1463–1476 (2017). DOI: 10.1111/gcb.13462
Schmid, M. & Köster, O. Excess warming of a Central European lake driven by solar brightening. Water Resour. Res. 52, 8103–8116 (2016). DOI: 10.1002/2016WR018651
Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D. & Laas, A. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Climatic Change 141, 759–773 (2017). DOI: 10.1007/s10584-017-1909-0
Thiery, W. et al. Understanding the performance of the FLake model over two African Great Lakes. Geosci. Model Dev. 7, 317–337 (2014). DOI: 10.5194/gmd-7-317-2014
Gaiser, E. E., Bachmann, R., Battoe, L., Deyrup, N. & Swain, H. Effects of climate variability on transparency and thermal structure in subtropical, monomictic Lake Annie, Florida. Fundam. Appl. Limnol. 175, 217–230 (2009). DOI: 10.1127/1863-9135/2009/0175-0217
Read, J. S. & Rose, K. C. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol. Oceanogr. 58, 921–931 (2013). DOI: 10.4319/lo.2013.58.3.0921
Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 1, 44–53 (2016). DOI: 10.1002/lol2.10027
Winslow, L. A., Read, J. S., Hansen, G. J. A. & Hanson, P. C. Small lakes show muted climate change signal in deepwater temperatures. Geophys. Res. Lett. 42, 355–361 (2015). DOI: 10.1002/2014GL062325
Fee, E. J., Hecky, R. E., Kasian, S. E. M. & Cruikshank, D. R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 41, 912–920 (1996). DOI: 10.4319/lo.1996.41.5.0912
MacIntyre, S. et al. Climate related variations in mixing dynamics of an Alaskan arctic lake. Limnol. Oceanogr. 54, 2401–2417 (2009). DOI: 10.4319/lo.2009.54.6_part_2.2401
Sharma, S. et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2, 150008 (2015). DOI: 10.1038/sdata.2015.8
Thiery, W. et al. LakeMIP Kivu: Evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. Tellus A: Dynamic Meteorology & Oceanography 66, 21390 (2014). DOI: 10.3402/tellusa.v66.21390
Vanderkelen, I. et al. Global heat uptake by inland waters. Geophys. Res. Lett. 47, e2020GL087867 (2020). DOI: 10.1029/2020GL087867
Wetzel, R. G. Limnology: Lake and River Ecosystems. (Academic Press, 2001).
Kalff, J. Limnology: Inland Water Ecosystems. (Prentice Hall, 2002).
Mohonk P. et al. Weekly and high frequency temperature profile data and Secchi depth, Mohonk Lake, NY, USA, 1985 to 2017. Environmental Data Initiative. 10.6073/pasta/7b67399344129afc63cd57e99e778160 (2020).
Robertson, D. Lake Mendota water temperature secchi depth snow depth ice thickness and meterological conditions 1894–2007. Environmental Data Initiative 10.6073/pasta/f20f9a644bd12e4b80cb288f1812c935 (2016).
Giblin, A. & Kling, G. Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989. ver 4. Environmental Data Initiative. 10.6073/pasta/1f780cc1b9e31f58a87d72b8eb2693ea (2016).
Giblin, A. & Kling, G. Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999 ver 4. Environmental Data Initiative. 10.6073/pasta/1fd85582de93a281e5e5d3b80df97b52 (2016).
Giblin, A. & Kling, G. Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009 ver 4. Environmental Data Initiative. 10.6073/pasta/791e3cb6288f75f602f23ef3e5532017 (2016).
Giblin, A. & Kling, G. Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2018 ver 4. Environmental Data Initiative. 10.6073/pasta/e440d2b3c94f798aa1a259e95b77596a (2019).
Craig, H. Lake Tanganyika Geochemical and Hydrographic Study: 1973 Expedition. UC San Diego: Library—Scripps Digital Collection https://escholarship.org/uc/item/4ct114wz (1974).
Rimet, F. et al. The Observatory on LAkes (OLA) database: Sixty years of environmental data accessible to the public. J. of Limnol. 164-178 (2020).
Pilla, R. M. and Anneville, O. Time series dataset of water temperature profiles during stable summer stratification in Lakes Annecy, Bourget and Geneva. Portail Data INRAE, V1, 10.15454/YOLA0Y (2020).
Straile, D., Jöhnk, K. D. & Rossknecht, H. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol. Oceanogr. 48, 1432–1438 (2003). DOI: 10.4319/lo.2003.48.4.1432
Niedrist, G. H., Psenner, R. & Sommaruga, R. Climate warming increases vertical and seasonal water temperature differences, and inter-annual variability in a mountain lake. Climatic Change 151, 473–490 (2018). DOI: 10.1007/s10584-018-2328-6
Leoni, B. et al. Long-term studies for evaluating the impacts of natural and anthropic stressors on limnological features and the ecosystem quality of Lake Iseo. Adv. Oceanogr. Limnol. 10, 81–93 (2019). DOI: 10.4081/aiol.2019.8622
Barbieri, A. & Mosello, R. Chemistry and trophic evolution of Lake Lugano in relation to nutrient budget. Aquat. Sci. 54, 219–237 (1992). DOI: 10.1007/BF00878138
Ambrosetti, W. & Barbanti, L. Deep water warming in lakes: an indicator of climatic change. J. Limnol. 58, 1–9 (1999). DOI: 10.4081/jlimnol.1999.1
Pilla, R. M. et al. Global data set of long-term summertime vertical temperature profiles in 153 lakes. Environmental Data Initiative 10.6073/pasta/8e3b506f86fa67949d336705c06d22f7 (2021).
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2020).