[en] Cholera outbreaks have occurred in Burundi, Rwanda, Democratic Republic of Congo, Tanzania, Uganda, and Kenya almost every year since 1977-1978, when the disease emerged in these countries. We used a multiscale, geographic information system-based approach to assess the link between cholera outbreaks, climate, and environmental variables. We performed time-series analyses and field investigations in the main affected areas. Results showed that cholera greatly increased during El Niño warm events (abnormally warm El Niños) but decreased or remained stable between these events. Most epidemics occurred in a few hotspots in lakeside areas, where the weekly incidence of cholera varied by season, rainfall, fluctuations of plankton, and fishing activities. During lull periods, persistence of cholera was explained by outbreak dynamics, which suggested a metapopulation pattern, and by endemic foci around the lakes. These links between cholera outbreaks, climate, and lake environments need additional, multidisciplinary study.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Nkoko, D.B.; Université de Franche-Comté, Besançon, France, Ministère de la Santé Publique, Kinshasa, Congo
Giraudoux, P.; Université de Franche-Comté, Besançon, France
Plisnier, Pierre-Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU) ; Royal Museum for Central Africa, Tervuren, Belgium
Tinda, A.M.; Ministère de la Santé Publique, Kinshasa, Congo
Piarroux, M.; Université de Franche-Comté, Besançon, France
Sudre, B.; Université de Franche-Comté, Besançon, France
Horion, S.; Joint Research Centre of the European Commission, Ispra, Italy
Tamfum, J.-J.M.; Ministère de la Santé Publique, Kinshasa, Congo, Université de Kinshasa, Kinshasha, Congo
Ilunga, B.K.; Ministère de la Santé Publique, Kinshasa, Congo
Piarroux, R.; Université de la Méditerranée, Marseille, France, University Hospital La Timone, Marseille, France
Language :
English
Title :
Dynamics of cholera outbreaks in great Lakes region of Africa, 1978-2008
Constantin de Magny G, Colwell R. Cholera and climate: a demonstrated relationship. Trans Am Clin Climatol Assoc. 2009;120:119-28.
Alam M, Sultana M, Nair G, Siddique A, Hasan N, Sack R, et al. Viable but nonculturable Vibrio cholerae O1 in biofi lms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A. 2007;104:17801-6. doi:10.1073/pnas.0705599104
Hashizume M, Faruque A, Wagatsuma Y, Hayashi T, Armstrong B. Cholera in Bangladesh: climatic components of seasonal variation. Epidemiology. 2010;21:706-10. doi:10.1097/ EDE.0b013e3181e5b053
Ohtomo K, Kobayashi N, Sumi A, Ohtomo N. Relationship of cholera incidence to El Niño and solar activity elucidated by time-series analysis. Epidemiol Infect. 2010;138:99-107. doi:10.1017/ S0950268809990203
Colwell RR. Global climate and infectious disease: the cholera paradigm. Science. 1996;274:2025-31. doi:10.1126/sci-ence.274.5295.2025
Piarroux R, Barrais R, Faucher B, Haus R, Piarroux M, Gaudart J, et al. Understanding the cholera epidemic, Haiti. Emerg Infect Dis. 2011;17:1161-8. doi:10.3201/eid1707.110059
Griffi th DC, Kelly-Hope L, Miller M. Review of reported cholera outbreaks worldwide, 1995-2005. Am J Trop Med Hyg. 2006;75:973-7.
World Health Organization. Global Task Force on Cholera Control. Weekly epidemiological record: cholera articles [cited 2010 Jan 12]. http://www.who.int/cholera/statistics/en
World Health Organization. Global alert and response (GAR). WHO report on global surveillance of epidemic-prone infectious diseases. Chapter 4: cholera [cited 2011 Aug 26]. http://www.who.int/csr/re-sources/publications/surveillance/WHO_CDS_CSR_ISR_2000_1/en/
Zuckerman JN, Rombo L, Fisch A. The true burden and risk of cholera: implications for prevention and control. Lancet Infect Dis. 2007;7:521-30. doi:10.1016/S1473-3099(07)70138-X
ProMED-Mail. The International Society for Infectious Diseases [cited 2010 Jan 12]. http://www.promedmail.org/pls/apex/f?p=2400:1000http://www.promedmail.org/pls/apex/f?p=2400:1000
World Health Organization. Cholera, 2009. Wkly Epidemiol Rec. 2010;85:293-308. http://www.who.int/wer/2010/wer8531.pdf
Legendre P, Legendre L. Numerical ecology. Amsterdam: Elsevier; 1998.
Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.
Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. J R Stat Soc Ser C Appl Stat. 2005;54:507-54.
Kulldorff M. A spatial scan statistic. Communications in statistics: theory and methods. 1997;26:1481-96. doi:10.1080/ 03610929708831995
Heffernan R, Mostashari F, Das D, Karpati A, Kulldorff M, Weiss D. Syndromic surveillance in public health practice, New York City. Emerg Infect Dis. 2004;10:858-64.
Elias J, Harmsen D, Claus H, Hellenbrand W, Frosch M, Vogel U. Spatiotemporal analysis of invasive meningococcal disease, Germany. Emerg Infect Dis. 2006;12:1689-95.
Cleveland RB, Cleveland WS, McRae JE, Terpenning I. STL: a seasonal-trend decomposition procedure based on Loess. J Off Stat. 1990;6:3-73.
International Research Institute for Climate and Society; IRI/LDEO Climate Data Library [cited 2010 Jan 12] http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.RFEv2
Horion S, Bergamino N, Stenuite S, Descy JP, Plisnier PD, Loiselle SA, et al. Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sensing of Environment. 2010;114:781-91. doi:10.1016/j. rse.2009.11.012
Bergamino N, Horion S, Stenuite S, Cornet Y, Loiselle SA, Plisnier PD, et al. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sensing of Environment 2010;114:772-80. doi:10.1016/j.rse.2009.11.013
Climate change impact on the sustainable use of Lake Tanganyika fi sheries (CLIMFISH) [cited 2010 Jan 12]. http://eo.belspo.be/Di-rectory/ProjectDetail.aspx?projID=772
Huot Y, Babin M, Bruyant F, Grob C, Twardowski MS, Claustre H. Does chlorophyll a provide the best index of phytoplankton bio-mass for primary productivity studies? Biogeosciences Discuss. 2007;4:707-45. doi:10.5194/bgd-4-707-2007
R Development Core Team. R: a language and environment for statistical computing. Version 2.13.1. Vienna: R Foundation for Statistical Computing; 2008 [cited 2010 Jan 12]. http://cran.r-project.org/doc/manuals/refman.pdf
Luque Fernández MA, Bauernfeind A, Díaz Jiménez J, Linares Gil C, El Omeiri N, Herrera Guibert D. Infl uence of temperature and rainfall on the evolution of cholera epidemics in Lusaka, Zambia, 2003-2006: analysis of a time series. Trans R Soc Trop Med Hyg. 2009;103:137-43. doi:10.1016/j.trstmh.2008.07.017
Birmingham ME, Lee L, Ndayimirije N, Nkurikiye S, Hersh B, Wells J, et al. Epidemic cholera in Burundi: patterns of transmission in the Great Rift Valley Lake region. Lancet. 1997;349:981-5. doi:10.1016/S0140-6736(96)08478-4
Shapiro RL, Otieno M, Adcock P, Phillips-Howard P, Hawley W, Kumar L, et al. Transmission of epidemic Vibrio cholerae O1 in rural western Kenya associated with drinking water from Lake Victoria: an environmental reservoir for cholera? Am J Trop Med Hyg. 1999;60:271-6.
Bompangue D, Giraudoux P, Handschumacher P, Piarroux M, Sudre B, Ekwanzala M, et al. Lakes as source of cholera outbreaks, Democratic Republic of Congo. Emerg Infect Dis. 2008;14:798-800. doi:10.3201/eid1405.071260
Bompangue D, Giraudoux P, Piarroux M, Mutombo G, Shamavu R, Sudre B, et al. Cholera epidemics, war and disasters around Goma and Lake Kivu: an eight-year survey. PLoS Negl Trop Dis. 2009;3:e436. doi:10.1371/journal.pntd.0000436
Hecky RE, Bugenyi FWB, Ochumba P, Talling JF, Mugidde R, Gophen M, et al. Deoxygenation of the deep waters of Lake Victoria, East Africa. Limnol Oceanogr. 1994;39:1476-81. doi:10.4319/ lo.1994.39.6.1476
Vollmer MK, Bootsma HA, Hecky RE, Patterson G, Halfman JD, Edmond JM, et al. Deep-water warming trend in Lake Malawi, East Africa. Limnol Oceanogr. 2005;50:727-32. doi:10.4319/ lo.2005.50.2.0727
O'Reilly CM, Alin S, Plisnier P, Cohen A, McKee B. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature. 2003;424:766-8. doi:10.1038/nature01833
Cocquyt C, Vyverman W. Phytoplankton in Lake Tanganyika: a comparison of community composition and biomass off Kigoma with previous studies 27 years ago. J Great Lakes Res. 2005;31:535- 46. doi:10.1016/S0380-1330(05)70282-3