[en] The nature of facial information that is stored by humans to recognise large amounts of faces is unclear despite decades of research in the field. To complicate matters further, little is known about how representations may evolve as novel faces become familiar, and there are large individual differences in the ability to recognise faces. I will present a theory I am developing and that assumes that facial representations are cost-efficient. In that framework, individual facial representations would incorporate different diagnostic features in different faces, regardless of familiarity, and would evolve depending on the relative stability in appearance over time. Further, coarse information would be prioritised over fine details in order to decrease storage demands. This would create low-cost facial representations that refine over time if appearance changes. Individual differences could partly rest on that ability to refine representation if needed. I will present data collected in the general population and in participants with developmental prosopagnosia. In support of the proposed view, typical observers and those with developmental prosopagnosia seem to rely on coarse peripheral features when they have no reason to expect someone’s appearance will change in the future.
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Devue, Christel ; Université de Liège - ULiège > Département de Psychologie > Psychologie et neurosciences cognitives
Language :
English
Title :
Cost-efficient face learning in typical populations and in developmental prosopagnosia