[en] Metalloids represent a wide range of elements with intermediate physiochemical properties between metals and non-metals. Many of the metalloids, like boron, selenium, and silicon are known to be essential or quasi-essential for plant growth. In contrast, metalloids viz. arsenic and germanium are toxic to plant growth. The toxicity of metalloids largely depends on their concentration within the living cells. Some elements, at low concentration, may be beneficial for plant growth and development; however, when present at high concentration, they often exert negative effects. In this regard, understanding the molecular mechanisms involved in the uptake of metalloids by roots, their subsequent transport to different tissues and inter/intra-cellular redistribution has great importance. The mechanisms of metalloids' uptake have been well studied in plants. Also, various transporters, as well as membrane channels involved in these processes, have been identified. In this review, we have discussed in detail the aspects concerning the positive/negative effects of different metalloids on plants. We have also provided a thorough account of the uptake, transport, and accumulation, along with the molecular mechanisms underlying the response of plants to these metalloids. Additionally, we have brought up the previous theories and debates about the role and effects of metalloids in plants with insightful discussions based on the current knowledge.
Parveen, Nishat; D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
Berni, Roberto ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Sudhakaran, Sreeja ; National Agri-Food Biotechnology Institute (NABI), Mohali, India
Bhat, Javaid A.; Soybean Research Institution, National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
Shinde, Suhas; Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, United States
Ramawat, Naleeni; Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
Singh, Vijay P.; Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Allahabad, India
Sahi, Shivendra; Department of Biological Sciences, University of the Sciences, Philadelphia, United States
Deshmukh, Rupesh ; National Agri-Food Biotechnology Institute (NABI), Mohali, India
Chauhan, Devendra K.; D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
Tripathi, Durgesh Kumar ; Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
Language :
English
Title :
Metalloids in plants: A systematic discussion beyond description
Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N., Khan, M., … Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15(1), 59.
Abedin, M. J., & Meharg, A. A. (2002). Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant and Soil, 243(1), 57–66.
Álvarez, C. R., Moreno, M. J., Bernardo, F. G., Martín-Doimeadios, R. R., & Nevado, J. B. (2014). Mercury methylation, uptake and bioaccumulation by the earthworm Lumbricus terrestris (Oligochaeta). Applied Soil Ecology, 84, 45–53.
Anjum, N. A., Gill, S. S., Gill, R., Hasanuzzaman, M., Duarte, A. C., Pereira, E., … Tuteja, N. (2014). Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma, 251(6), 1265–1283.
Anwaar, S. A., Ali, S., Ali, S., Ishaque, W., Farid, M., Farooq, M. A., … Sharif, M. (2015). Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environmental Science and Pollution Research, 22(5), 3441–3450.
Aquea, F., Federici, F., Moscoso, C., Vega, A., Jullian, P., Haseloff, J. I. M., & Arce-Johnson, P. (2012). A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant, Cell & Environment, 35(4), 719–734.
Ardıc, M., Sekmen, A. H., Turkan, I., Tokur, S., & Ozdemir, F. (2009). The effects of boron toxicity on root antioxidant systems of two chickpea (Cicer arietinum L.) cultivars. Plant and Soil, 314(1–2), 99–108.
Arif, N., Sharma, N. C., Yadav, V., Ramawat, N., Dubey, N. K., Tripathi, D. K., … Sahi, S. (2019). Understanding heavy metal stress in a rice crop: Toxicity, tolerance mechanisms, and amelioration strategies. Journal of Plant Biology, 62(4), 239–253.
Asher, C. J., & Reay, P. F. (1979). Arsenic uptake by barley seedlings. Functional Plant Biology, 6(4), 459–466.
Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J. F., … Guerriero, G. (2019). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161, 98–106.
Bhat, J. A., Shivaraj, S. M., Singh, P., Navadagi, D. B., Tripathi, D. K., Dash, P. K., … Deshmukh, R. (2019). Role of silicon in mitigation of heavy metal stresses in crop plants. Plants, 8(3), 71.
Bienert, G. P., Thorsen, M., Schüssler, M. D., Nilsson, H. R., Wagner, A., Tamás, M. J., & Jahn, T. P. (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology, 6(1), 26.
Blevins, D. G., & Lukaszewski, K. M. (1998). Boron in plant structure and function. Annual Review of Plant Biology, 49(1), 481–500.
Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The Plant Cell, 7(7), 1099–1111.
Bolaños, L., Lukaszewski, K., Bonilla, I., & Blevins, D. (2004). Why boron? Plant Physiology and Biochemistry, 42(11), 907–912.
Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., … Römheld, V. (2002). Boron in plant biology. Plant Biology, 4(02), 205–223.
Cakmak, I., & Römheld, V. (1997). Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil, 193(1), 71–83.
Camacho-Cristóbal, J. J., Rexach, J., & González-Fontes, A. (2008). Boron in plants: Deficiency and toxicity. Journal of Integrative Plant Biology, 50(10), 1247–1255.
Camacho-Cristóbal, J. J., Rexach, J., Herrera-Rodríguez, M. B., Navarro-Gochicoa, M. T., & González-Fontes, A. (2011). Boron deficiency and transcript level changes. Plant Science, 181(2), 85–89.
Candan, N., & Tarhan, L. (2003). The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Science, 165(4), 769–776.
Carbonell-Barrachina, A. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H. (1998). The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant and Soil, 198(1), 33–43.
Carvalho, M. E. A., Paulo, R. C., Castro, P. R. C., Kozak, M., & Azevedo, R. A. (2020). The sweet side of misbalanced nutrients in cadmium-stressed plants. Annals of Applied Biology, 176, 275–284.
Castrillo, G., Sánchez-Bermejo, E., de Lorenzo, L., Crevillén, P., Fraile-Escanciano, A., Mohan, T. C., … del Puerto, Y. L. (2013). WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. The Plant Cell, 25(8), 2944–2957.
Catarecha, P., Segura, M. D., Franco-Zorrilla, J. M., García-Ponce, B., Lanza, M., Solano, R., … Leyva, A. (2007). A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. The Plant Cell, 19(3), 1123–1133.
Cervilla, L. M., Blasco, B., Ríos, J. J., Romero, L., & Ruiz, J. M. (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100(4), 747–756.
Cervilla, L. M., Rosales, M. A., Rubio-Wilhelmi, M. M., Sánchez-Rodríguez, E., Blasco, B., Ríos, J. J., … Ruiz, J. M. (2009). Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science, 176(4), 545–552.
Chai, L. Y., Mubarak, H., Yang, Z. H., Yong, W., Tang, C. J., & Mirza, N. (2016). Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L. Environmental Science and Pollution Research, 23(8), 7470–7481.
Chatterjee, M., Tabi, Z., Galli, M., Malcomber, S., Buck, A., Muszynski, M., & Gallavotti, A. (2014). The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. The Plant Cell, 26(7), 2962–2977.
Chen, H., Li, S., Liu, J., Diwan, B. A., Barrett, J. C., & Waalkes, M. P. (2004). Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: Implications for arsenic hepatocarcinogenesis. Carcinogenesis, 25(9), 1779–1786.
Chen, L. S., Han, S., Qi, Y. P., & Yang, L. T. (2012). Boron stresses and tolerance in citrus. African Journal of Biotechnology, 11(22), 5961–5969.
Chiba, Y., Mitani, N., Yamaji, N., & Ma, J. F. (2009). HvLsi1 is a silicon influx transporter in barley. The Plant Journal, 57(5), 810–818.
Cocker, K. M., Evans, D. E., & Hodson, M. J. (1998). The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiologia Plantarum, 104(4), 608–614.
Cox, M. S., Bell, P. F., & Kovar, J. L. (1996). Differential tolerance of canola to arsenic when grown hydroponically or in soil. Journal of Plant Nutrition, 19(12), 1599–1610.
Cuypers, A., Remans, T., Weyens, N., Colpaert, J., Vassilev, A., & Vangronsveld, J. (2013). Soil-plant relationships of heavy metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 161–193). Dordrecht: Springer.
Davis, S. M., Drake, K. D., & Maier, K. J. (2002). Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere, 48(6), 615–620.
Deshmukh, R., & Bélanger, R. R. (2016). Molecular evolution of aquaporins and silicon influx in plants. Functional Ecology, 30(8), 1277–1285.
Deshmukh, R., Sonah, H., & Belanger, R. (2020). New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. Journal of Experimental Botany, 71, 6775–6788.
Deshmukh, R., Tripathi, D. K., & Guerriero, G. (2020). Metalloids in plants: Advances and future prospects. New York: John Wiley & Sons.
Deshmukh, R. K., Ma, J. F., & Bélanger, R. R. (2017). Role of silicon in plants. Frontiers in Plant Science, 8, 1858.
Deshmukh, R. K., Nguyen, H. T., & Belanger, R. R. (2017). Aquaporins: Dynamic role and regulation. Frontiers in Plant Science, 8, 1420.
Deshmukh, R. K., Vivancos, J., Guérin, V., Sonah, H., Labbé, C., Belzile, F., & Bélanger, R. R. (2013). Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology, 83, 303–315.
Deshmukh, R. K., Vivancos, J., Ramakrishnan, G., Guérin, V., Carpentier, G., Sonah, H., … Bélanger, R. R. (2015). A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. The Plant Journal, 83(3), 489–500.
Directive, H. A. T. (1976). Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the community. Official Journal of the European Union, L.129(5), 23–29.
DiTusa, S. F., Fontenot, E. B., Wallace, R. W., Silvers, M. A., Steele, T. N., Elnagar, A. H., … Smith, A. P. (2016). A member of the phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytologist, 209(2), 762–772.
Dixit, G., Singh, A. P., Kumar, A., Mishra, S., Dwivedi, S., Kumar, S., … Tripathi, R. D. (2016). Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiology and Biochemistry, 99, 86–96.
Doncheva, S. N., Poschenrieder, C., Stoyanova, Z., Georgieva, K., Velichkova, M., & Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany, 65(2), 189–197.
Dordas, C., & Brown, P. H. (2001). Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant and Soil, 235(1), 95–103.
Duan, G. L., Hu, Y., Schneider, S., McDermott, J., Chen, J., Sauer, N., … Zhu, Y. G. (2015). Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants, 2(1), nplants2015202.
Duan, G. L., Hu, Y., Schneider, S., McDermott, J., Chen, J., Sauer, N., … Zhu, Y. G. (2016). Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants, 2(1), 6.
Dutta, P., & Bandopadhyay, P. (2016). Arsenic pollution in agriculture: Its uptake and metabolism in plant systems. Agricultural Research and Technology, 1(5), 113–117.
Dutta, P., Islam, M. N., & Mondal, S. (2014). Interactive effect of arsenic stress and seed phytate content on germination and seedling development of different vegetable crops. Journal of Plant Physiology and Pathology, 2(2), 2.
Dutta, P., & Mondal, S. (2014). Changes in pigments and photosyntheti c parameters of cowpea under two inorganic arsenicals. IOSR-JAVS, 7(4), 99–103.
Eiche, E., Bardelli, F., Nothstein, A. K., Charlet, L., Göttlicher, J., Steininger, R., … Sadana, U. S. (2015). Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Science of the Total Environment, 505, 952–961.
Eikmann, T., & Kloke, A. (1993). Nutzungs-und schutzgutbezogene Orientierungswerte für (Schad-)Stoffe in Böden – Eikmannn-Kloke-Werte. In Rosenkranz, D., Bachmann, G., König, W., & Einsele, G. (Eds.), Bodenschutz, ergänzbares Handbuch der Massnahmen und Empfehlungen für Schutz, Pflege und Sanierung von Böden, Landschaft und Grundwasser, Berlin: E. Schmidt Verlag.
Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 11–17.
Epstein, E. (1999). Silicon. Annual Review of Plant Biology, 50(1), 641–664.
Fang, K., Zhang, W., Xing, Y., Zhang, Q., Yang, L., Cao, Q., & Qin, L. (2016). Boron toxicity causes multiple effects on Malus domestica pollen tube growth. Frontiers in Plant Science, 7, 208.
Farooq, M. A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K., & Iqbal, Z. (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety, 96, 242–249.
Farooq, M. A., Islam, F., Ali, B., Najeeb, U., Mao, B., Gill, R. A., … Zhou, W. (2016). Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42–52.
Fauteux, F., Rémus-Borel, W., Menzies, J. G., & Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249(1), 1–6.
Feng, J., Shi, Q., Wang, X., Wei, M., Yang, F., & Xu, H. (2010). Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 123(4), 521–530.
Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R., & Guo, J. (2013). The uptake and detoxification of antimony by plants: A review. Environmental and Experimental Botany, 96, 28–34.
Feng, R., Wei, C., Tu, S., Tang, S., & Wu, F. (2011). Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions. Microchemical Journal, 97(1), 57–61.
Feng, R., Wei, C., Tu, S., Wu, F., & Yang, L. (2009). Antimony accumulation and antioxidative responses in four fern plants. Plant and Soil, 317(1–2), 93–101.
Fleck, A. T., Nye, T., Repenning, C., Stahl, F., Zahn, M., & Schenk, M. K. (2010). Silicon enhances suberization and lignification in roots of rice (Oryza sativa). Journal of Experimental Botany, 62(6), 2001–2011.
Frick, H. (1985). Boron tolerance and accumulation in the duckweed, Lemna minor. Journal of Plant Nutrition, 8(12), 1123–1129.
García, P. C., Rivero, R. M., López-Lefebre, L. R., Sánchez, E., Ruiz, J. M., & Romero, L. (2001). Response of oxidative metabolism to the application of carbendazim plus boron in tobacco. Functional Plant Biology, 28(8), 801–806.
Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9(3), 303–321.
Gebel, T. (1997). Arsenic and antimony: Comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107(3), 131–144.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.
Gong, H. J., Chen, K. M., Chen, G. C., Wang, S. M., & Zhang, C. L. (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26(5), 1055–1063.
Gonzalo, M. J., Lucena, J. J., & Hernández-Apaolaza, L. (2013). Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiology and Biochemistry, 70, 455.
Gräfe, M., Donner, E., Collins, R. N., & Lombi, E. (2014). Speciation of metal (loid) s in environmental samples by X-ray absorption spectroscopy: A critical review. Analytica Chimica Acta, 822, 1–22.
Grégoire, C., Rémus-Borel, W., Vivancos, J., Labbé, C., Belzile, F., & Bélanger, R. R. (2012). Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. The Plant Journal, 72(2), 320–330.
Groppa, M. D., Tomaro, M. L., & Benavides, M. P. (2001). Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science, 161(3), 481–488.
Guerriero, G., Deshmukh, R., Sonah, H., Sergeant, K., Hausman, J. F., Lentzen, E., … Exley, C. (2019). Identification of the aquaporin gene family in Cannabis sativa and evidence for the accumulation of silicon in its tissues. Plant Science, 287, 110167. https://doi.org/10.1016/j.plantsci.2019.110167
Guerriero, G., Stokes, I., & Exley, C. (2018). Is callose required for silicification in plants? Biology Letters, 14(10), 20180338.
Gunes, A., Inal, A., Bagci, E. G., & Pilbeam, D. J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290(1–2), 103–114.
Guntzer, F., Keller, C., & Meunier, J. D. (2012). Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32(1), 201–213.
Gür, N., Türker, O. C., & Böcük, H. (2016). Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere, 157, 1–9.
Han, S., Tang, N., Jiang, H. X., Yang, L. T., Li, Y., & Chen, L. S. (2009). CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Science, 176(1), 143–153.
Hanaoka, H., Uraguchi, S., Takano, J., Tanaka, M., & Fujiwara, T. (2014). OsNIP3; 1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. The Plant Journal, 78(5), 890–902.
Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxová, M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4), 459–466.
Hayes, J. E., & Reid, R. J. (2004). Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiology, 136(2), 3376–3382.
He, M., & Yang, J. (1999). Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Science of the Total Environment, 243, 149–155.
He, Z., Yan, H., Chen, Y., Shen, H., Xu, W., Zhang, H., … Ma, M. (2016). An aquaporin PvTIP4; 1 from Pteris vittata may mediate arsenite uptake. New Phytologist, 209(2), 746–761.
Heine, G., Tikum, G., & Horst, W. J. (2005). Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions. Journal of Plant Nutrition and Soil Science, 168(4), 600–606.
Herrera-Rodríguez, M. B., González-Fontes, A., Rexach, J., Camacho-Cristobal, J. J., Maldonado, J. M., & Navarro-Gochicoa, M. T. (2010). Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), 115–122.
Hildebrand, M., Volcani, B. E., Gassmann, W., & Schroeder, J. I. (1997). A gene family of silicon transporters. Nature, 385(6618), 688–689.
Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027–1046.
Hoffman, R. D., & Lane, M. D. (1992). Iodophenylarsine oxide and arsenical affinity chromatography: New probes for dithiol proteins. Application to tubulins and to components of the insulin receptor-glucose transporter signal transduction pathway. Journal of Biological Chemistry, 267(20), 14005–14011.
Hoffmann, J., Berni, R., Hausman, J. F., & Guerriero, G. (2020). A review on the beneficial role of silicon against salinity in non-accumulator crops: Tomato as a model. Biomolecules, 10(9), 1284.
Hossain, M. A., Uddin, M. N., & Sarwar, A. K. M. G. (2007). Toxicity of arsenic on germination and seedling growth of rice. Journal of the Bangladesh Society of Agriculture, Science & Technology, 4(1–2), 153–156. http://www.atsdr.cdc.gov/cercla/97list.html, https://www.pthorticulture.com/en/training-center/role-of-silicon-in-plant-culture/
Huang, J. H., Cai, Z. J., Wen, S. X., Guo, P., Ye, X., Lin, G. Z., & Chen, L. S. (2014). Effects of boron toxicity on root and leaf anatomy in two Citrus species differing in boron tolerance. Trees, 28(6), 1653–1666.
Huang, Y., Chen, Z., & Liu, W. (2012). Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb (III) or Sb (V). Plant and Soil, 352(1–2), 41–49.
Huang, Y. Z., Zhang, W. Q., & Zhao, L. J. (2012). Silicon enhances resistance to antimony toxicity in the low-silica rice mutant, lsi1. Chemistry and Ecology, 28(4), 341–354.
Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, M., Shahzad, S. M., Yousaf, B., … Tu, S. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. Journal of Environmental Management, 183, 521–529.
Inal, A., Pilbeam, D. J., & Gunes, A. (2009). Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. Journal of Plant Nutrition, 32(1), 112–128.
Ismail, C., & Volker, R. (1997). Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil, 193(1-2), 71.
Jahan, I., Hoque, S., Ullah, S. M., & Kibria, M. G. (2003). Effects of arsenic on some growth parameters of rice plant. Dhaka University Journal of Biological Science, 12(1), 71–77.
Jahn, T. P., & Bienert, G. P. (Eds.). (2011). MIPs and their roles in the exchange of metalloids (Vol. 679). Berlin: Springer Science & Business Media.
Jehangir, I. A., Wani, S. H., Bhat, M. A., Hussain, A., Raja, W., & Haribhushan, A. (2017). Micronutrients for crop production: Role of boron. International Journal of Current Microbiology & Applied Sciences, 6(11), 5347–5353.
Jia, H., Ren, H., Gu, M., Zhao, J., Sun, S., Zhang, X., … Xu, G. (2011). The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice. Plant Physiology, 156(3), 1164–1175.
Jiang, F. Y., Chen, X., & Luo, A. C. (2009). Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake. Aquatic Ecology, 43(4), 879–890.
Júnior, F. B., Farina, M., Viegas, S., & Kempinas, W. D. G. (2014). Toxicology of metals and metalloids. BioMed Research International, 2014, 1–2.
Kabata-Pendias, A. (2010). Trace elements in soils and plants. Cleveland, OH: CRC Press.
Kabay, N., Sarp, S., Yuksel, M., Arar, Ö., & Bryjak, M. (2007). Removal of boron from seawater by selective ion exchange resins. Reactive and Functional Polymers, 67(12), 1643–1650.
Kamiya, T., & Fujiwara, T. (2009). Arabidopsis NIP1; 1 transports antimonite and determines antimonite sensitivity. Plant and Cell Physiology, 50(11), 1977–1981.
Kamiya, T., Islam, R., Duan, G., Uraguchi, S., & Fujiwara, T. (2013). Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Science and Plant Nutrition, 59(4), 580–590.
Kamiya, T., Tanaka, M., Mitani, N., Ma, J. F., Maeshima, M., & Fujiwara, T. (2009). NIP1; 1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. Journal of Biological Chemistry, 284(4), 2114–2120.
Katsuhara, M., Sasano, S., Horie, T., Matsumoto, T., Rhee, J., & Shibasaka, M. (2014). Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnology, 31(3), 213–219.
Keller, C., Rizwan, M., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Chaurand, P., & Meunier, J. D. (2015). Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta, 241(4), 847–860.
Khan, N., Syeed, S., Masood, A., Nazar, R., & Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1(1), e1–e1.
Kitchin, K. T., & Wallace, K. (2008). The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. Journal of Inorganic Biochemistry, 102(3), 532–539.
Koreňovská, M. (2006). Determination of arsenic, antimony, and selenium by FI-HG-AAS in foods consumed in Slovakia. Journal of Food Nutrition Research, 45(2), 84–88.
Kroukamp, E. M., Wondimu, T., & Forbes, P. B. (2016). Metal and metalloid speciation in plants: Overview, instrumentation, approaches and commonly assessed elements. TrAC Trends in Analytical Chemistry, 77, 87–99.
Kumar, D., Singh, V. P., Tripathi, D. K., Prasad, S. M., & Chauhan, D. K. (2015). Effect of arsenic on growth, arsenic uptake, distribution of nutrient elements and thiols in seedlings of Wrightia arborea (Dennst.) Mabb. International Journal of Phytoremediation, 17(2), 128–134.
Kumar, K., Mosa, K. A., Chhikara, S., Musante, C., White, J. C., & Dhankher, O. P. (2014). Two rice plasma membrane intrinsic proteins, OsPIP2; 4 and OsPIP2; 7, are involved in transport and providing tolerance to boron toxicity. Planta, 239(1), 187–198.
LeBlanc, M. S., McKinney, E. C., Meagher, R. B., & Smith, A. P. (2013). Hijacking membrane transporters for arsenic phytoextraction. Journal of Biotechnology, 163(1), 1–9.
Lewis, D. H. (1980). Boron, lignification and the origin of vascular plants—A unified hypothesis. New Phytologist, 84(2), 209–229.
Li, H., Zhu, Y., Hu, Y., Han, W., & Gong, H. (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 37(4), 71.
Li, Y. M., & Broome, J. D. (1999). Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Research, 59(4), 776–780.
Liu, D., Jiang, W., Zhang, L., & Li, L. (2000). Effects of boron ions on root growth and cell division of broadbean (Vicia faba L.). Israel Journal of Plant Sciences, 48(1), 47–51.
Liu, K., Liu, L. L., Ren, Y. L., Wang, Z. Q., Zhou, K. N., Liu, X., … Wang, J. L. (2015). Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited conditions in rice. Plant Science, 236, 18–28.
Liu, W. J., Zhu, Y. G., Hu, Y., Williams, P. N., Gault, A. G., Meharg, A. A., … Smith, F. A. (2006). Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environmental Science & Technology, 40(18), 5730–5736.
Ma, J. F., Miyake, Y., & Takahashi, E. (2001). Silicon as a beneficial element for crop plants. Studies in Plant Science, 8, 17–39.
Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., … Yano, M. (2006). A silicon transporter in rice. Nature, 440(7084), 688–691.
Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392–397.
Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., … Yano, M. (2007). An efflux transporter of silicon in rice. Nature, 448(7150), 209–212.
Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., & Zhao, F. J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9931–9935.
Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579.
Machado, A., Šlejkovec, Z., Van Elteren, J. T., Freitas, M. C., & Baptista, M. S. (2006). Arsenic speciation in transplanted lichens and tree bark in the framework of a biomonitoring scenario. Journal of Atmospheric Chemistry, 53(3), 237–249.
Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29(3), 177–187.
Mandlik, R., Thakral, V., Raturi, G., Shinde, S., Nikolić, M., Tripathi, D. K., … Deshmukh, R. (2020). Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany, 71, 6703–6718.
Meharg, A. A., & Jardine, L. (2003). Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist, 157(1), 39–44.
Menzel, D. B., Hamadeh, H. K., Lee, E., Meacher, D. M., Said, V., Rasmussen, R. E., … Roth, R. N. (1999). Arsenic binding proteins from human lymphoblastoid cells. Toxicology Letters, 105(2), 89–101.
Michalke, B. (2003). Element speciation definitions, analytical methodology, and some examples. Ecotoxicology and Environmental Safety, 56(1), 122–139.
Mitani, N., Chiba, Y., Yamaji, N., & Ma, J. F. (2009). Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. The Plant Cell, 21(7), 2133–2142.
Mitani, N., & Ma, J. F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56(414), 1255–1261.
Mitani, N., Ma, J. F., & Iwashita, T. (2005). Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant and Cell Physiology, 46(2), 279–283.
Mitani-Ueno, N., Yamaji, N., Zhao, F. J., & Ma, J. F. (2011). The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany, 62(12), 4391–4398.
Miwa, K., & Fujiwara, T. (2010). Boron transport in plants: Co-ordinated regulation of transporters. Annals of Botany, 105(7), 1103–1108. https://doi.org/10.1093/aob/mcq044
Miwa, K., Takano, J., Omori, H., Seki, M., Shinozaki, K., & Fujiwara, T. (2007). Plants tolerant of high boron levels. Science, 318(5855), 1417–1417.
Montpetit, J., Vivancos, J., Mitani-Ueno, N., Yamaji, N., Rémus-Borel, W., Belzile, F., … Bélanger, R. R. (2012). Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Molecular Biology, 79(1–2), 35–46.
Mosa, K. A., Kumar, K., Chhikara, S., Mcdermott, J., Liu, Z., Musante, C., … Dhankher, O. P. (2012). Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Research, 21(6), 1265–1277.
Mukhopadhyay, R., Bhattacharjee, H., & Rosen, B. P. (2014). Aquaglyceroporins: Generalized metalloid channels. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(5), 1583–1591.
Müller, K., Daus, B., Mattusch, J., Stärk, H. J., & Wennrich, R. (2009). Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata. Talanta, 78(3), 820–826.
Mullineaux, P., & Karpinski, S. (2002). Signal transduction in response to excess light: Getting out of the chloroplast. Current Opinion in Plant Biology, 5(1), 43–48.
Murciego, A. M., Sánchez, A. G., González, M. R., Gil, E. P., Gordillo, C. T., Fernández, J. C., & Triguero, T. B. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145(1), 15–21.
Nable, R. O., Bañuelos, G. S., & Paull, J. G. (1997). Boron toxicity. Plant and Soil, 193(1–2), 181–198.
Naeem, M., Naeem, M. S., Ahmad, R., Ahmad, R., Ashraf, M. Y., Ihsan, M. Z., … Abdullah, M. (2018). Improving drought tolerance in maize by foliar application of boron: Water status, antioxidative defense and photosynthetic capacity. Archives of Agronomy and Soil Science, 64(5), 626–639.
Nakagawa, Y., Hanaoka, H., Kobayashi, M., Miyoshi, K., Miwa, K., & Fujiwara, T. (2007). Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. The Plant Cell, 19(8), 2624–2635.
Nakata, Y., Ueno, M., Kihara, J., Ichii, M., Taketa, S., & Arase, S. (2008). Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice. Crop Protection, 27(3–5), 865–868.
Neumann, D., & Zur Nieden, U. (2001). Silicon and heavy metal tolerance of higher plants. Phytochemistry, 56(7), 685–692.
Neves, J. M., Aquino, L. A. D., Berger, P. G., Neves, J. C., Rocha, G. C., & Barbosa, E. A. (2019). Silicon and boron mitigate the effects of water deficit on sunflower. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(3), 175–182.
Nwugo, C. C., & Huerta, A. J. (2008). Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant and Soil, 311(1–2), 73–86.
Oertli, J. J. (1994). Non-homogeneity of boron distribution in plants and consequences for foliar diagnosis. Communications in Soil Science and Plant Analysis, 25(7–8), 1133–1147.
Okkenhaug, G., Zhu, Y. G., He, J., Li, X., Luo, L., & Mulder, J. (2012). Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: Differences in mechanisms controlling soil sequestration and uptake in rice. Environmental Science & Technology, 46(6), 3155–3162.
Ortega, A., Garrido, I., Casimiro, I., & Espinosa, F. (2017). Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus L.) plants. PLoS One, 12(9), e0183991.
Ouellette, S., Goyette, M. H., Labbé, C., Laur, J., Gaudreau, L., Gosselin, A., … Bélanger, R. R. (2017). Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Frontiers in Plant Science, 8, 949.
Palaniappan, P. L. R. M., & Karthikeyan, S. (2009). Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. Journal of Environmental Sciences, 21, 229–236. https://doi.org/10.1016/S1001-0742(08)62256-1
Pan, X., Zhang, D., Chen, X., Bao, A., & Li, L. (2011). Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil. Water, Air, & Soil Pollution, 215(1–4), 517–523.
Pandey, A. K., Gautam, A., & Dubey, R. S. (2019). Transport and detoxification of metalloids in plants in relation to plant-metalloid tolerance. Plant Gene, 17, 100171.
Pang, Y., Li, L., Ren, F., Lu, P., Wei, P., Cai, J., … Wang, X. (2010). Overexpression of the tonoplast aquaporin AtTIP5; 1 conferred tolerance to boron toxicity in Arabidopsis. Journal of Genetics and Genomics, 37(6), 389–397.
Papadakis, I. E., Dimassi, K. N., & Therios, I. N. (2003). Response of two citrus genotypes to six boron concentrations: Concentration and distribution of nutrients, total absorption, and nutrient use efficiency. Australian Journal of Agricultural Research, 54(6), 571–580.
Parks, J. L., & Edwards, M. (2005). Boron in the environment. Critical Reviews in Environmental Science and Technology, 35(2), 81–114.
Parr, A. J., & Loughman, B. C. (1983). Boron and membrane function in plants. In D. A. Robb & W. S. Pierpoint (Eds.), Metals and micronutrients: Uptake and utilization by plants. London: Academic Press.
Patrícia Vieira da Cunha, K., Williams Araújo do Nascimento, C., & José da Silva, A. (2008). Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. Journal of Plant Nutrition and Soil Science, 171(6), 849–853.
Pierart, A., Shahid, M., Sejalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234.
Pommerrenig, B., Diehn, T. A., & Bienert, G. P. (2015). Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Science, 238, 212–227.
Prasad, M. N. V. (2004). Metallothioneins, metal binding complexes and metal sequestration in plants. In Heavy metal stress in plants (pp. 47–83). Berlin, Heidelberg: Springer.
Redondo Nieto, M., Maunoury, N., Mergaert, P., Kondorosi, E., Bonilla, I., & Bolaños, L. (2012). Boron and calcium induce major changes in gene expression during legume nodule organogenesis. Does boron have a role in signalling? New Phytologist, 195(1), 14–19.
Rees, R., Robinson, B. H., Menon, M., Lehmann, E., Günthardt-Goerg, M. S., & Schulin, R. (2011). Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana). Environmental Science & Technology, 45(24), 10538–10543.
Reid, R. (2007). Update on boron toxicity and tolerance in plants. Advances in Plant and Animal Boron Nutrition, 1, 83–90.
Reid, R. (2014). Understanding the boron transport network in plants. Plant and Soil, 385(1–2), 1–13.
Reid, R., & Fitzpatrick, K. (2009b). Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiology, 151(1), 413–420.
Reid, R., & Fitzpatrick, K. L. (2009a). Redistribution of boron in leaves reduces boron toxicity. Plant Signaling & Behavior, 4(11), 1091–1093.
Rejomon, G., Nair, M. & Joseph, T. (2010) Trace metal dynamics in fishes from the southwest coast of India. Environmental Monitoring and Assessment, 167, 243–255.
Ressler, T., Wong, J., Roos, J., & Smith, I. L. (2000). Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl) manganese tricarbonyl-added gasolines using XANES spectroscopy. Environmental Science & Technology, 34(6), 950–958.
Richmond, K. E., & Sussman, M. (2003). Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology, 6(3), 268–272.
Rizwan, M., Meunier, J. D., Miche, H., & Keller, C. (2012). Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. Journal of Hazardous Materials, 209, 326–334.
Rodrigues, F. A., Vale, F. X. R., Korndörfer, G. H., Prabhu, A. S., Datnoff, L. E., Oliveira, A. M. A., & Zambolim, L. (2003). Influence of silicon on sheath blight of rice in Brazil. Crop Protection, 22(1), 23–29.
Rogalla, H., & Römheld, V. (2002). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell & Environment, 25(4), 549–555.
Rosen, B. P., & Tamás, M. J. (2010). Arsenic transport in prokaryotes and eukaryotic microbes. Advances in Experimental Medicine and Biology, 679, 47–55.
Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F. F., … Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015, 396010. https://doi.org/10.1155/2015/396010.
Sanders, O. I., Rensing, C., Kuroda, M., Mitra, B., & Rosen, B. P. (1997). Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. Journal of Bacteriology, 179(10), 3365–3367.
Sangster, A. G., Hodson, M. J., & Tubb, H. J. (2001). Silicon deposition in higher plants. In Studies in plant science (Vol. 8, pp. 85–113). Amsterdam: Elsevier.
Sasaki, A., Yamaji, N., & Ma, J. F. (2016). Transporters involved in mineral nutrient uptake in rice. Journal of Experimental Botany, 67(12), 3645–3653.
Scandalios, J. G. (2002). The rise of ROS. Trends in Biochemical Sciences, 27(9), 483–486.
Schröder, P., Lyubenova, L., & Huber, C. (2009). Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? Environmental Science and Pollution Research, 16(7), 795–804.
Schulin, R., Johnson, A., & Frossard, E. (2010). Trace element deficient soils (p. 175). Chichester, UK: Wiley-Blackwell Publishing.
Seth, K., & Aery, N. C. (2014). Effect of boron on the contents of chlorophyll, carotenoid, phenol and soluble leaf protein in mung bean, Vigna radiata (L.) Wilczek. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(3), 713–719.
Shen, X., Xiao, X., Dong, Z., & Chen, Y. (2014). Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiologiae Plantarum, 36(11), 3069.
Shi, X., Zhang, C., Wang, H., & Zhang, F. (2005). Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil, 272(1), 53–60.
Shimoyama, S. (1958). Effect of silicon on lodging and wing damage in rice. Japan: Report for the Research Funds granted by Ministry of Agriculture.
Shin, H., Shin, H. S., Dewbre, G. R., & Harrison, M. J. (2004). Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low- and high-phosphate environments. The Plant Journal, 39(4), 629–642.
Shtangeeva, I., Bali, R., & Harris, A. (2011). Bioavailability and toxicity of antimony. Journal of Geochemical Exploration, 110(1), 40–45.
Shtangeeva, I., Steinnes, E., & Lierhagen, S. (2012). Uptake of different forms of antimony by wheat and rye seedlings. Environmental Science and Pollution Research, 19(2), 502–509.
Singh, A. P., Dixit, G., Mishra, S., Dwivedi, S., Tiwari, M., Mallick, S., … Tripathi, R. D. (2015). Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Frontiers in Plant Science, 6, 340.
Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253.
Singh, V. K., & Upadhyay, R. S. (2014). Effects of arsenic on reactive oxygen species and antioxidant defense system in tomato plants. Toxicological & Environmental Chemistry, 96(9), 1374–1383.
Smith, S. E., Christophersen, H. M., Pope, S., & Smith, F. A. (2010). Arsenic uptake and toxicity in plants: Integrating mycorrhizal influences. Plant and Soil, 327(1–2), 1–21.
Song, A., Li, P., Li, Z., Fan, F., Nikolic, M., & Liang, Y. (2011). The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant and Soil, 344(1–2), 319–333.
Song, W. Y., Yamaki, T., Yamaji, N., Ko, D., Jung, K. H., Fujii-Kashino, M., … Ma, J. F. (2014). A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 111(44), 15699–15704.
Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., & Tandon, P. K. (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environmental Science & Technology, 41(8), 2930–2936.
Srivastava, S., & Sharma, Y. K. (2013). Arsenic phytotoxicity in black gram (Vigna mungo L. Var. PU19) and its possible amelioration by phosphate application. Journal of Plant Physiology & Pathology, 1(3), 2.
Srivastava, S., Suprasanna, P., & D'Souza, S. F. (2011). Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma, 248(4), 805–815.
Stanislawska, M., Janasik, B., & Wasowicz, W. (2013). Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC–ICP-MS) for determination of chromium compounds in the air at the workplace. Talanta, 117, 14–19.
Sun, H., Guo, J., Duan, Y., Zhang, T., Huo, H., & Gong, H. (2017). Isolation and functional characterization of CsLsi1, a silicon transporters gene in Cucumis sativus. Physiologia Plantarum, 159, 201–214. https://doi.org/10.1111/ppl.12515
Sun, S., Gu, M., Cao, Y., Huang, X., Zhang, X., Ai, P., … Xu, G. (2012). A constitutive expressed phosphate transporter, OsPht1; 1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiology, 159(4), 1571–1581.
Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K., & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985–999.
Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., … Fujiwara, T. (2002). Arabidopsis boron transporter for xylem loading. Nature, 420(6913), 337–340.
Takano, J., Wada, M., Ludewig, U., Schaaf, G., Von Wirén, N., & Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell, 18(6), 1498–1509.
Tamás, M. J. (2016). Cellular and molecular mechanisms of antimony transport, toxicity and resistance. Environmental Chemistry, 13(6), 955–962.
Tanaka, M., Wallace, I. S., Takano, J., Roberts, D. M., & Fujiwara, T. (2008). NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. The Plant Cell, 20(10), 2860–2875.
Tang, Z., Chen, Y., Chen, F., Ji, Y., & Zhao, F. J. (2017). OsPTR7 (OsNPF8. 1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant and Cell Physiology, 58(5), 913.
Thomas, R. (2008). Practical guide to ICP-MS: A tutorial for beginners (2nd ed.). Cleveland, OH: CRC Press.
Treder, W., & Cieslinski, G. (2005). Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. Journal of Plant Nutrition, 28(6), 917–929.
Tripathi, D. K., Rai, P., Guerriero, G., Sharma, S., Corpas, F. J., & Singh, V. P. (2020). Silicon induces adventitious root formation in rice (Oryza sativa L.) under arsenate stress with the involvement of nitric oxide and indole-3-acetic acid. Journal of Experimental Botany, 72(12), 4457–4471.
Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K., & Maathuis, F. J. (2007). Arsenic hazards: Strategies for tolerance and remediation by plants. Trends in Biotechnology, 25(4), 158–165.
Tripathi, D. K., Varma, R. K., Singh, S., Sachan, M., Guerriero, G., Kushwaha, B. K., … Sahi, S. (2020). Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Scientific Reports, 10(1), 1–5.
Tschan, M., Robinson, B., & Schulin, R. (2008). Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environmental Geochemistry and Health, 30(2), 187–191.
Tschan, M., Robinson, B. H., Nodari, M., & Schulin, R. (2009). Antimony uptake by different plant species from nutrient solution, agar and soil. Environmental Chemistry, 6(2), 144–152.
Tu, C., & Ma, L. Q. (2003). Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant and Soil, 249(2), 373–382.
Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A review of silicon in soils and plants and its role in US agriculture: History and future perspectives. Soil Science, 181(9/10), 393–411.
Vacchina, V., Mari, S., Czernic, P., Marquès, L., Pianelli, K., Schaumlöffel, D., … Łobiński, R. (2003). Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography−inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Analytical Chemistry, 75(11), 2740–2745.
Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stoláriková, M., & Lux, A. (2012). Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 110(2), 433–443.
Vaculík, M., Lukačová, Z., Bokor, B., Martinka, M., Tripathi, D. K., & Lux, A. (2020). Alleviation mechanisms of metal (loid) stress in plants by silicon: A review. Journal of Experimental Botany, 71(21), 6744–6757. https://doi.org/10.1093/jxb/eraa288
Vaculík, M., Lux, A., Luxová, M., Tanimoto, E., & Lichtscheidl, I. (2009). Silicon mitigates cadmium inhibitory effects in young maize plants. Environmental and Experimental Botany, 67(1), 52–58.
Valvanidis, A., & Vlachogianni, T. (2010). Metal pollution in ecosystems. Ecotoxicology studies and risk assessment in the marine environment. Science Advances on Environmental Toxicology and Pharmacology, 21, 241.
Vishwakarma, K., Singh, V. P., Prasad, S. M., Chauhan, D. K., Tripathi, D. K., & Sharma, S. (2020). Silicon and plant growth promoting rhizobacteria differentially regulate AgNP-induced toxicity in Brassica juncea: Implication of nitric oxide. Journal of Hazardous Materials, 390, 121806.
Vivancos, J., Deshmukh, R., Grégoire, C., Rémus-Borel, W., Belzile, F., & Bélanger, R. R. (2016). Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense). Journal of Plant Physiology, 200, 82–89.
Wakuta, S., Fujikawa, T., Naito, S., & Takano, J. (2016). Tolerance to excess-boron conditions acquired by stabilization of a BOR1 variant with weak polarity in Arabidopsis. Frontiers in Cell and Developmental Biology, 4, 4.
Wang, H., Xu, Q., Kong, Y. H., Chen, Y., Duan, J. Y., Wu, W. H., & Chen, Y. F. (2014). Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1; 1 expression in response to phosphate starvation. Plant Physiology, 164(4), 2020–2029.
Wang, J., Zhao, F. J., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130(3), 1552–1561.
Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: A review. Journal of Soil Science and Plant Nutrition, 12(2), 221–244.
Wimmer, M. A., Lochnit, G., Bassil, E., Mühling, K. H., & Goldbach, H. E. (2009). Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography. Plant and Cell Physiology, 50(7), 1292–1304.
Wu, Z., Ren, H., McGrath, S. P., Wu, P., & Zhao, F. J. (2011). Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiology, 157(1), 498–508.
Wysocki, R., Chéry, C. C., Wawrzycka, D., Van Hulle, M., Cornelis, R., Thevelein, J. M., & Tamás, M. J. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molecular Microbiology, 40(6), 1391–1401.
Xiao, X.-Y., Guo, Z.-H., Luo, Y.-P., Bi, J.-P., Yang, M., & Huang, D. Q. (2015). Effect of antimony on physiological responses of green Chinese cabbage and enzyme activities of allitic udic ferrisols. Pedosphere, 25(1), 124–129.
Xu, W., Dai, W., Yan, H., Li, S., Shen, H., Chen, Y., … Ma, M. (2015). Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Molecular Plant, 8(5), 722–733.
Yamaji, N., & Ma, J. F. (2007). Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiology, 143(3), 1306–1313.
Yamaji, N., & Ma, J. F. (2011). Further characterization of a rice silicon efflux transporter, Lsi2. Soil Science and Plant Nutrition, 57(2), 259–264.
Yamaji, N., Mitatni, N., & Ma, J. F. (2008). A transporter regulating silicon distribution in rice shoots. The Plant Cell, 20(5), 1381–1389.
Yamaji, N., Chiba, Y., Mitani-Ueno, N., & Ma, J. F. (2012). Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiology, 160(3), 1491–1497.
Yamaji, N., Sakurai, G., Mitani-Ueno, N., & Ma, J. F. (2015). Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proceedings of the National Academy of Sciences, 112(36), 11401–11406.
Yıldırım, K. (2017). Transcriptomic and hormonal control of boron uptake, accumulation and toxicity tolerance in poplar. Environmental and Experimental Botany, 141, 60–73.
Zangi, R., & Filella, M. (2012). Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chemico-Biological Interactions, 197(1), 47–57.
Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. Biotech, 9(3), 73.
Zengin, F. (2012). Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress. Journal of Environmental Biology, 36(1), 249.
Zhang, G. L., Dai, Q. G., & Zhang, H. C. (2006). Silicon application enhances resistance to sheath blight (Rhizoctonia solani) in rice. Zhi wu sheng li yu fen zi sheng wu xue xue bao. Journal of Plant Physiology and Molecular Biology, 32(5), 600–606.
Zhang, X., Yang, F., Shim, J. Y., Kirk, K. L., Anderson, D. E., & Chen, X. (2007). Identification of arsenic-binding proteins in human breast cancer cells. Cancer Letters, 255(1), 95–106.
Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181(4), 777–794.
Zhong, C. X., & Mass, M. J. (2001). Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. Toxicology Letters, 122(3), 223–234.
Zhou, T., Radaev, S., Rosen, B. P., & Gatti, D. L. (2000). Structure of the Ars A ATPase: The catalytic subunit of a heavy metal resistance pump. The EMBO Journal, 19(17), 4838–4845.