CyberKnife; Monte-Carlo commissioning; Pretreatment verification; SBRT; Feasibility Studies; Humans; Lung/radiation effects; Particle Accelerators; Radiosurgery/instrumentation; Algorithms; Monte Carlo Method; Robotics; Lung; Radiosurgery; Biophysics; Radiology, Nuclear Medicine and Imaging; Physics and Astronomy (all); General Physics and Astronomy; General Medicine
Abstract :
[en] INTRODUCTION: To commission the Monte Carlo (MC) algorithm based model of CyberKnife robotic stereotactic system (CK) and evaluate the feasibility of patient specific QA using the ArcCHECK cylindrical 3D-array (AC) with Multiplug inserts (MP).
RESULTS: Four configurations were used for simple beam setup and two for patient QA, replacing water equivalent inserts by lung. For twelve collimators (5-60mm) in simple setup, mean (SD) differences between MC and RayTracing algorithm (RT) of the number of points failing the 3%/1mmgamma criteria were 1(1), 1(3), 1(2) and 1(2) for the four MP configurations. Tracking fiducials were placed within AC for patient QA. Single lung insert setup resulted in mean gamma-index 2%/2mm of 90.5% (range [74.3-95.9]) and 82.3% ([66.8-94.5]) for MC and RT respectively, while 93.5% ([86.8-98.2]) and 86.2% ([68.7-95.4]) in presence of largest inhomogeneities, showing significant differences (p<0.05).
DISCUSSION: After evaluating the potential effects, 1.12g/cc PMMA and 0.09g/cc lung material assignment showed the best results. Overall, MC-based model showed superior results compared to RT for simple and patient specific testing, using a 2%/2mm criteria. Results are comparable with other reported commissionings for flattening filter free (FFF) delivery. Further improvement of MC calculation might be challenging as Multiplan has limited material library.
CONCLUSIONS: The AC with Multiplug allowed for comprehensive commissioning of CyberKnife MC algorithm and is useful for patient specific QA for stereotactic body radiation therapy. MC calculation accuracy might be limited due to Multiplan's insufficient material library; still results are comparable with other reported commissioning measurements using FFF beams.
Disciplines :
Physics
Author, co-author :
Dechambre, D; Liege University Hospital, Liège, Belgium. Electronic address: ddechambre@chu.ulg.ac.be
Baart, Véronique ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
CUCCHIARO, Séverine ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
ERNST, Christelle ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Jansen, Nicolas ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Berkovic, P; Liege University Hospital, Liège, Belgium
MIEVIS, Carole ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Coucke, Philippe ; Université de Liège - ULiège > Département des sciences cliniques > Radiothérapie
Gulyban, A; Liege University Hospital, Liège, Belgium
Language :
English
Title :
Commissioning Monte Carlo algorithm for robotic radiosurgery using cylindrical 3D-array with variable density inserts.
[1] Gershkevitsh, E., Schmidt, R., Velez, G., Miller, D., Korf, E., Yip, F., et al. Dosimetric verification of radiotherapy treatment planning systems: results of IAEA pilot study. Radiother Oncol 89 (2008), 338–346, 10.1016/j.radonc.2008.07.007.
[2] Accuray. Equipment specifications 2010:1–36.
[3] Accuray Incorporated. Monte Carlo dose calculation algorithm for the CyberKnife ® robotic radiosurgery system 2010.
[4] Toutaoui, A., Ait chikh, S., Khelassi-Toutaoui, N., Hattali, B., Monte Carlo photon beam modeling and commissioning for radiotherapy dose calculation algorithm. Phys Med 30 (2014), 833–837, 10.1016/j.ejmp.2014.05.007.
[5] Ma, C.M., Mok, E., Kapur, A., Pawlicki, T., Findley, D., Brain, S., et al. Clinical implementation of a Monte Carlo treatment planning system. Med Phys 26 (1999), 2133–2143.
[6] C-M Ma, JS Li, J Deng JF. Implementation of Fast Monte Carlo Dose Calculation for CyberKnife SRS/SRT n.d.:62.
[7] Fogliata, A., Nicolini, G., Clivio, A., Vanetti, E., Mancosu, P., Cozzi, L., Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water. Phys Med Biol 56 (2011), 2885–2886, 10.1088/0031-9155/56/9/2885.
[8] Foster, R.D., Speiser, M.P., Solberg, T.D., Commissioning and verification of the collapsed cone convolution superposition algorithm for SBRT delivery using flattening filter-free beams. J Appl Clin Med Phys, 15, 2014, 4631, 10.1120/jacmp.v15i2.4631.
[9] Wiant, D.B., Terrell, J.A., Maurer, J.M., Yount, C.L., Sintay, B.J., Commissioning and validation of BrainLAB cones for 6X FFF and 10X FFF beams on a Varian TrueBeam STx. J Appl Clin Med Phys, 14, 2013, 4493.
[10] Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE. Image-guided IMRT. 2006. http://dx.doi.org/10.1007/3-540-30356-1.
[11] Masi, L., Russo, S., Francescon, P., Doro, R., Frassanito, M.C., Fumagalli, M.L., et al. CyberKnife beam output factor measurements: a multi-site and multi-detector study. Phys Med 32:12 (2016), 1637–1643, 10.1016/j.ejmp.2016.08.001.
[12] Lin, M.-H., Veltchev, I., Koren, S., Ma, C., Li, J., Robotic radiosurgery system patient-specific QA for extracranial treatments using the planar ion chamber array and the cylindrical diode array. J Appl Clin Med Phys, 16, 2015, 5486, 10.1120/jacmp.v16i4.5486.
[13] Francescon, P., Kilby, W., Satariano, N., Monte Carlo simulated correction factors for output factor measurement with the CyberKnife system-results for new detectors and correction factor dependence on measurement distance and detector orientation. Phys Med Biol 59 (2014), N7–N11, 10.1088/0031-9155/59/6/N11.
[14] Huet, C., Moignier, C., Barraux, V., Loiseau, C., Sebe-Mercier, K., Batalla, A., et al. Study of commercial detector responses in non-equilibrium small photon fields of a 1000 MU/min CyberKnife system. Phys Med 32 (2016), 818–825, 10.1016/j.ejmp.2016.05.052.
[16] Nuclear, S., ArcCHECK user's guide. 2009, Sun Nucl.
[17] International Commission on Radiation Units and Measurements (ICRU) 1987. Use of computers in external beam radiotherapy procedures with high-energy photons and electrons. ICRU Rep 42 (Bethesda, MD ICRU) 1987.
[18] Papanikolaou N, Battista J, Boyer A. Tissue inhomogeneity corrections for megavoltage photon beams. AAPM Task Gr 2004.
[19] Smilowitz, J.B., Das, I.J., Feygelman, V., Fraass, B.A., Kry, S.F., Marshall, I.R., et al. AAPM medical physics practice guideline 5.a.: commissioning and QA of treatment planning dose calculations – megavoltage photon and electron beams. J Appl Clin Med Phys 16 (2015), 14–34.
[20] Reynaert, N., Demol, B., Charoy, M., Bouchoucha, S., Crop, F., Wagner, A., et al. Clinical implementation of a Monte Carlo based treatment plan QA platform for validation of CyberKnife and Tomotherapy treatments. Phys Med 32 (2016), 1225–1237, 10.1016/j.ejmp.2016.09.009.
[21] Bassinet, C., Huet, C., Derreumaux, S., Brunet, G., Chéa, M., Baumann, M., et al. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife® and linear accelerators equipped with microMLC and circular cones. Med Phys, 40, 2013, 71725, 10.1118/1.4811139.
[23] Kozelka, J., Robinson, J., Nelms, B., Zhang, G., Savitskij, D., Feygelman, V., Optimizing the accuracy of a helical diode array dosimeter: a comprehensive calibration methodology coupled with a novel virtual inclinometer. Med Phys 38 (2011), 5021–5032, 10.1118/1.3622823.
[24] Li, G., Zhang, Y., Jiang, X., Bai, S., Peng, G., Wu, K., et al. Evaluation of the ArcCHECK QA system for IMRT and VMAT verification. Phys Med 29 (2013), 295–303, 10.1016/j.ejmp.2012.04.005.
[25] Nelms, B.E., Chan, M.F., Jarry, G., Lemire, M., Lowden, J., Hampton, C., et al. Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Med Phys, 40, 2013, 111722, 10.1118/1.4826166.
[26] Chaswal, V., Weldon, M., Gupta, N., Chakravarti, A., Rong, Y., Commissioning and comprehensive evaluation of the ArcCHECK cylindrical diode array for VMAT pretreatment delivery QA. J Appl Clin Med Phys 15 (2014), 212–225, 10.1120/jacmp.v15i4.4832.
[27] Cashmore, J., Golubev, S., Dumont, J.L., Sikora, M., Alber, M., Ramtohul, M., Validation of a virtual source model for Monte Carlo dose calculations of a flattening filter free linac. Med Phys, 39, 2012, 3262, 10.1118/1.4709601.
[28] Gallo, J.J., Kaufman, I., Powell, R., Pandya, S., Somnay, A., Bossenberger, T., et al. Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom. J Appl Clin Med Phys, 16, 2015, 5120, 10.1120/jacmp.v16i1.5120.
[29] Bergman, A.M., Gete, E., Duzenli, C., Teke, T., Monte Carlo modeling of HD120 multileaf collimator on Varian TrueBeam linear accelerator for verification of 6X and 6X FFF VMAT SABR treatment plans. J Appl Clin Med Phys, 15, 2014, 4686, 10.1120/jacmp.v15i3.4686.
[30] Li, Q.L., Deng, X.W., Chen, L.X., Huang, S.M., The angular dependence of a 2 - dimensional diode array and the feasibility of its application in verifying the composite dose distribution of intensity - modulated radiation therapy. Chin J Cancer 29:6 (2010), 617–620.
[31] Petoukhova, A.L., van Egmond, J., Eenink, M.G.C., Wiggenraad, R.G.J., van Santvoort, J.P.C., The ArcCHECK diode array for dosimetric verification of HybridArc. Phys Med Biol 56 (2011), 5411–5428, 10.1088/0031-9155/56/16/021.
[32] Tyagi, N., Moran, J.M., Litzenberg, D.W., Bielajew, A.F., Fraass, B.A., Chetty, I.J., Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation. Med Phys 34 (2007), 651–663, 10.1118/1.2428405.
[33] Kim, H.D., Kim, B.Y., Kim, E.C., Yun, S.M., Kang, J.K., Kim, S.K., Comparison of dose distributions for Hounsfield number conversion methods in GEANT4. J Korean Phys Soc 64 (2014), 1912–1918, 10.3938/jkps.64.1912.
[34] Vanderstraeten, B., Chin, P.W., Fix, M., Leal, A., Mora, G., Reynaert, N., et al. Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study. Phys Med Biol 52 (2007), 539–562, 10.1088/0031-9155/52/3/001.