CyberKnife; GTV median dose; Lung SBRT; Monte-Carlo re-prescription; Predictive nomogram; Humans; Linear Models; Lung/radiation effects; Monte Carlo Method; Multivariate Analysis; Organs at Risk; Radiation Dosage; Radiotherapy Planning, Computer-Assisted/methods; Algorithms; Radiosurgery/methods; Radiotherapy Dosage; Lung; Radiosurgery; Radiotherapy Planning, Computer-Assisted; Biophysics; Radiology, Nuclear Medicine and Imaging; Physics and Astronomy (all); General Physics and Astronomy; General Medicine
Abstract :
[en] BACKGROUND AND PURPOSE: The use of Monte Carlo (MC) dose calculation algorithm for lung patients treated with stereotactic body radiotherapy (SBRT) can be challenging. Prescription in low density media and time-consuming optimization conducted CyberKnife centers to propose an equivalent path length (EPL)-to-MC re-prescription method based on GTV median dose. Unknown at the time of planning, GTV D50% practical application remains difficult. The current study aims at creating a re-prescription predictive model in order to limit conflicting dose value during EPL optimization.
MATERIAL AND METHODS: 129 patients planned with EPL algorithm were recalculated with MC. Relative GTV_D50% discrepancies were assessed and influencing parameters identified using wrapper feature selection. Based on best descriptive parameters, predictive nomogram was built from multivariate linear regression. EPL-to-MC OARs near max-dose discrepancies were reported.
RESULTS: The differences in GTV_D50% (median 10%, SD: 9%) between MC and EPL were significantly (p < .001) impacted by the lesion's surface-to-volume ratio and the average relative electronic density of the GTV and the GTV's 15 mm shell. Built upon those parameters, a nomogram (R2 = 0.79, SE = 4%) predicting the GTV_D50% discrepancies was created. Furthermore EPL-to-MC OAR dose tolerance limit showed a strong linear correlation with coefficient range [0.84-0.99].
CONCLUSION: Good prediction on the required re-prescription can be achieved prior planning using our nomogram. Based on strong linear correlation between EPL and MC for OARs near max-dose, further restriction on dose constraints during the EPL optimization can be warranted. This a priori knowledge eases the re-prescription process in limiting conflicting dose value.
Disciplines :
Physics
Author, co-author :
Dechambre, D; Liege University Hospital, Department of Radiation Oncology, Liège, Belgium. Electronic address: ddechambre@chu.ulg.ac.be
Janvary, L Z; Debrecen University Hospital, Department of Radiation Oncology, Debrecen, Hungary
Jansen, Nicolas ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Berkovic, P; University of Leuven, Department of Oncology, Leuven, Belgium
MIEVIS, Carole ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Baart, Véronique ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
CUCCHIARO, Séverine ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Coucke, Philippe ; Université de Liège - ULiège > Département des sciences cliniques > Radiothérapie
Gulyban, A; Liege University Hospital, Department of Radiation Oncology, Liège, Belgium
Language :
English
Title :
Prediction of GTV median dose differences eases Monte Carlo re-prescription in lung SBRT.
Chang, J.Y., Senan, S., Paul, M.A., Mehran, R.J., Louie, A.V., Groen, H.J.M., et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16 (2016), 630–637, 10.1016/S1470-2045(15)70168-3.Stereotactic.
Bezjak A. RTOG 0813: Seamless Phase I/Ii Study of Stereotactic Lung Radiotherapy (SBRT) for Early Stage, Centrally Located, Non-Small Cell Lung Cancer (NSCLC) in Medically Inoperable Patients. 2011.
Timmerman RD, Michalski J, Fowler J, Choy H, Johnstone D, Galvin JM, et al. Radiation therapy oncology group RTOG 0236 A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Medically Inoperable Stage I / II Non-Small Cell Lung Cancer. 2004;6.
Harada, K., Katoh, N., Suzuki, R., Ito, Y.M., Shimizu, S., Onimaru, R., et al. Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT). Phys Medica 32 (2016), 305–311, 10.1016/j.ejmp.2015.10.093.
Janvary, Z.L., Jansen, N., Baart, V., Devillers, M., Dechambre, D., Lenaerts, E., et al. Clinical outcomes of 130 patients with primary and secondary lung tumors treated with Cyberknife robotic stereotactic body radiotherapy. Radiol Oncol 51 (2017), 178–186, 10.1515/raon-2017-0015.
Search, H., Journals, C., Contact, A., Iopscience, M., Address IP. Collapsed cone and analytical anisotropic algorithm dose calculations compared to VMC ++ Monte Carlo simulations in clinical cases. J Phys Conf Ser, 21007, 2007, 10.1088/1742-6596/74/1/012007.
Kawrakow, I., Fippel, M., Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol 45 (2000), 2163–2183, 10.1088/0031-9155/45/8/308.
Toutaoui, A., Ait chikh, S., Khelassi-Toutaoui, N., Hattali, B., Monte carlo photon beam modeling and commissioning for radiotherapy dose calculation algorithm. Phys Medica 30 (2014), 833–837, 10.1016/j.ejmp.2014.05.007.
Ma, C.-M., Mok, E., Kapur, A., Pawlicki, T., Findley, D., Brain, S., et al. Clinical implementation of a Monte Carlo treatment planning system. Med Phys 26 (1999), 2133–2143, 10.1118/1.598729.
van der Voort van Zyp, N.C., Hoogeman, M.S., van de Water, S., Levendag, P.C., van der Holt, B., Heijmen, B.J., et al. Clinical introduction of Monte Carlo treatment planning: a different prescription dose for non-small cell lung cancer according to tumor location and size. Radiother Oncol 96 (2010), 55–60, 10.1016/j.radonc.2010.04.009.
Bibault, J.E., Mirabel, X., Lacornerie, T., Tresch, E., Reynaert, N., Lartigau, E., Adapted prescription dose for monte carlo algorithm in lung SBRT: clinical outcome on 205 patients. PLoS One, 10, 2015, 10.1371/journal.pone.0133617.
Program C, Quantities F, Quality I, Ion-beam R. The International commission on radiation units and measurements. J ICRU 2010;10:NP.2-NP. doi: http://doi.org/10.1093/jicru/ndq001.
Lacornerie, T., Lisbona, A., Mirabel, X., Lartigau, E., Reynaert, N., GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms. Radiat Oncol, 9, 2014, 223, 10.1186/s13014-014-0223-5.
Timmerman, R.D., An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol 18 (2008), 215–222, 10.1016/j.semradonc.2008.04.001.
Dechambre, D., Baart, V., Cucchiaro, S., Ernst, C., Jansen, N., Berkovic, P., et al. Commissioning Monte Carlo algorithm for robotic radiosurgery using cylindrical 3D-array with variable density inserts. Phys Med 33 (2017), 152–158, 10.1016/j.ejmp.2017.01.005.
Nalbantov, G., Kietselaer, B., Vandecasteele, K., Oberije, C., Berbee, M., Troost, E., et al. Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients. Radiother Oncol 109 (2013), 100–106, 10.1016/j.radonc.2013.08.035.
Kohavi, R., John, G.H., Wrappers for feature subset selection. Artif Intell 97 (1997), 273–324, 10.1016/S0004-3702(97)00043-X.
Schuring, D., Hurkmans, C.W., Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose. Radiat Oncol, 3, 2008, 21, 10.1186/1748-717X-3-21.
Rassiah-Szegedi, P., Salter, B.J., Fuller, C.D., Blough, M., Papanikolaou, N., Fuss, M., Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT). Acta Oncol 45 (2006), 989–994, 10.1080/02841860600919225.
Berkovic, P., Gulyban, A., Nguyen, P.V., Dechambre, D., Martinive, P., Jansen, N., et al. Stereotactic robotic body radiotherapy for patients with unresectable hepatic oligorecurrence. Clin Colorectal Cancer, 2016, 10.1016/j.clcc.2017.03.006.
Berkovic, P., Gulyban, A., Swenen, L., Dechambre, D., Viet Nguyen, P., Jansen, N., et al. EP-1226: Stereotactic robotic body radiotherapy for patients with pulmonary oligometastases. Radiother Oncol 123 (2017), S661–S662, 10.1016/S0167-8140(17)31661-4.
Zhuang, T., Djemil, T., Qi, P., Magnelli, A., Stephans, K., Videtic, G., et al. Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy. J Appl Clin Med Phys, 14, 2013, 4011, 10.1120/jacmp.v14i2.4011.
Zhuang, T., Djemil, T., Qi, P., Magnelli, A., Stephans, K., Videtic, G., et al. Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy. J Appl Clin Med Phys 14 (2013), 38–51, 10.1120/jacmp.v14i2.4011.
Zheng, D., Zhu, X., Zhang, Q., Liang, X., Zhen, W., Lin, C., et al. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT. Radiat Oncol, 11, 2016, 83, 10.1186/s13014-016-0661-3.
Liu, H., Zhuang, T., Stephans, K., Videtic, G., Raithel, S., Djemil, T., et al. Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT. J Appl Clin Med Phys, 16, 2015, 5514, 10.1120/JACMP.V16I6.5514.
Altunbas, C., Kavanagh, B., Dzingle, W., Stuhr, K., Gaspar, L., Miften, M., Dosimetric errors during treatment of centrally located lung tumors with stereotactic body radiation therapy: Monte Carlo evaluation of tissue inhomogeneity corrections. Med Dosim 38 (2013), 436–441, 10.1016/j.meddos.2013.06.002.