Biological molecular machines; Chemical equilibriums; Chemical systems; Chemical transformations; Energy carriers; Equilibrium reactions; Molecular energies; Nanomachines; Nanometres; Out of equilibrium; Bioengineering; Atomic and Molecular Physics, and Optics; Biomedical Engineering; Materials Science (all); Condensed Matter Physics; Electrical and Electronic Engineering; General Materials Science
Abstract :
[en] Biological molecular machines enable chemical transformations, assembly, replication and motility, but most distinctively drive chemical systems out of-equilibrium to sustain life1,2. In such processes, nanometre-sized machines produce molecular energy carriers by driving endergonic equilibrium reactions. However, transforming the work performed by artificial nanomachines3-5 into chemical energy remains highly challenging. Here, we report a light-fuelled small-molecule ratchet capable of driving a coupled chemical equilibrium energetically uphill. By bridging two imine6-9 macrocycles with a molecular motor10,11, the machine forms crossings and consequently adopts several distinct topologies by either a thermal (temporary bond-dissociation) or photochemical (unidirectional rotation) pathway. While the former will relax the machine towards the global energetic minimum, the latter increases the number of crossings in the system above the equilibrium value. Our approach provides a blueprint for coupling continuous mechanical motion performed by a molecular machine with a chemical transformation to reach an out-of-equilibrium state.
Disciplines :
Chemistry
Author, co-author :
Kathan, Michael ; Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands. m.p.k.kathan@rug.nl
Crespi, Stefano ; Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
Thiel, Niklas O; Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
Stares, Daniel L ; Institut für Chemie und Biochemie der Freien Universität Berlin, Berlin, Germany
Morsa, Denis ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique ; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
de Boer, John; Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
Pacella, Gianni ; Macromolecular Chemistry and New Polymeric Materials and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
van den Enk, Tobias ; Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
Kobauri, Piermichele; Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
Portale, Giuseppe ; Macromolecular Chemistry and New Polymeric Materials and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
Schalley, Christoph A ; Institut für Chemie und Biochemie der Freien Universität Berlin, Berlin, Germany. c.schalley@fu-berlin.de
Feringa, Ben L ; Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands. b.l.feringa@rug.nl
Language :
English
Title :
A light-fuelled nanoratchet shifts a coupled chemical equilibrium.
We thank P. van der Meulen and J. Kemink for helping with NMR measurements, R. Sneep and A. Springer for mass spectrometric measurements and A. S. Lubbe and R. Costil for proof reading. We gratefully acknowledged financial support from the European Union (H2020 Excellent Science – European Research Council) under grant number 694345 (B.L.F.), (H2020 Excellent Science – Marie Skłodowska-Curie Actions) under grant number 838280 (S.C.) and NOAH project (H2020-MSCA-ITN) under grant number 765297 (D.L.S.); Ministerie van Onderwijs, Cultuur en Wetenschap (Ministry of Education, Culture and Science, Netherlands) under grant number 024.001.035 (B.L.F.) and Bonus Incentive Scheme (G. Portale); Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation) – Feodor Lynen grant (M.K.); and Deutsche Forschungsgemeinschaft (German Research Foundation) under grant number TH2510/1-1 (N.O.T.). We are grateful for the assistance of the Core Facility BioSupraMol at FU Berlin, which is supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).
Goodsell, D. S. The Machinery of Life (Springer, 2009).
Schliwa, M. Molecular Motors (Wiley-VCH, 2006).
Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000). DOI: 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
Sauvage, J.-P. Molecular Machines and Motors (Springer, 2001).
Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley-VCH, 2008).
Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002). DOI: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3771 (2006). DOI: 10.1021/cr020452p
Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007). DOI: 10.1039/B616752G
Belowich, M. E. & Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012). DOI: 10.1039/c2cs15305j
Koumura, N., Geertsema, E. M., Van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002). DOI: 10.1021/ja012499i
Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018). DOI: 10.1073/pnas.1712784115
Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012). DOI: 10.1039/C1CS15262A
Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006). DOI: 10.1038/nnano.2006.45
Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020). DOI: 10.1021/acs.chemrev.9b00291
Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond (John Wiley & Sons, 2016).
Greb, L. & Lehn, J. M. Light-driven molecular motors as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014). DOI: 10.1021/ja506034n
Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 549, 374–378 (2017). DOI: 10.1038/nature23677
García-López, V., Liu, D. & Tour, J. M. Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020). DOI: 10.1021/acs.chemrev.9b00221
Uhl, E., Thumser, S., Mayer, P. & Dube, H. Transmission of unidirectional molecular motor rotation to a remote biaryl axis. Angew. Chem. Int. Ed. 57, 11064–11068 (2018). DOI: 10.1002/anie.201804716
Štacko, P. et al. Locked synchronous rotor motion in a molecular motor. Science 356, 964–968 (2017). DOI: 10.1126/science.aam8808
Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013). DOI: 10.1126/science.1229753
Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015). DOI: 10.1038/nnano.2015.96
Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015). DOI: 10.1038/nnano.2014.260
Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered, artificial molecular pumps: a minimalistic approach. Beilstein J. Nanotechnol. 6, 2096–2104 (2015). DOI: 10.3762/bjnano.6.214
Qiu, Y. et al. A molecular dual pump. J. Am. Chem. Soc. 141, 17472–17476 (2019). DOI: 10.1021/jacs.9b08927
Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006). DOI: 10.1038/440163a
Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015). DOI: 10.1038/nnano.2014.315
Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017). DOI: 10.1039/C7CS00112F
Sell, H. et al. Towards a light driven molecular assembler. Commun. Chem. 2, 62 (2019). DOI: 10.1038/s42004-019-0163-y
Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020). DOI: 10.1021/acscentsci.0c00064
Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017). DOI: 10.1002/anie.201702531
Kucharski, T. J. et al. Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew. Chem. Int. Ed. 48, 7040–7043 (2009). DOI: 10.1002/anie.200901511
Akbulatov, S., Tian, Y., Kapustin, E. & Boulatov, R. Model studies of the kinetics of ester hydrolysis under stretching force. Angew. Chem. Int. Ed. 52, 6992–6995 (2013). DOI: 10.1002/anie.201300746
Hoops, S. et al. COPASI–a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006). DOI: 10.1093/bioinformatics/btl485
Warnke, S. et al. Protomers of benzocaine: solvent and permittivity dependence. J. Am. Chem. Soc. 137, 4236–4242 (2015). DOI: 10.1021/jacs.5b01338