[en] Temporal trend analysis of (total) mercury (THg) concentrations in Arctic biota were assessed as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) Mercury Assessment. A mixed model including an evaluation of non-linear trends was applied to 110 time series of THg concentrations from Arctic and Subarctic biota. Temporal trends were calculated for full time series (6–46 years) and evaluated with a particular focus on recent trends over the last 20 years. Three policy-relevant questions were addressed: (1) What time series for THg concentrations in Arctic biota are currently available? (2) Are THg concentrations changing over time in biota from the Arctic? (3) Are there spatial patterns in THg trends in biota from the Arctic? Few geographical patterns of recent trends in THg concentrations were observed; however, those in marine mammals tended to be increasing at more easterly longitudes, and those of seabirds tended to be increasing in the Northeast Atlantic; these should be interpreted with caution as geographic coverage remains variable. Trends of THg in freshwater fish were equally increasing and decreasing or non-significant while those in marine fish and mussels were non-significant or increasing. The statistical power to detect trends was greatly improved compared to the 2011 AMAP Mercury Assessment; 70% of the time series could detect a 5% annual change at the 5% significance level with power ≥ 80%, while in 2011 only 19% met these criteria. Extending existing time series, and availability of new, powerful time series contributed to these improvements, highlighting the need for annual monitoring, particularly given the spatial and temporal information needed to support initiatives such as the Minamata Convention on Mercury. Collecting the same species/tissues across different locations is recommended. Extended time series from Alaska and new data from Russia are also needed to better establish circumarctic patterns of temporal trends.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Morris, Adam D.; Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, Canada
Wilson, Simon J.; Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Tromsø, Norway
Fryer, Rob J.; Marine Scotland, Marine Laboratory, Aberdeen, United Kingdom
Thomas, Philippe J.; Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, Canada
Andreasen, Birgitta; The Faroese Environment Agency, Argir, Faroe Islands
Blévin, Pierre; Akvaplan-niva AS, Tromsø, Norway
Bustamante, Paco; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, La Rochelle, France ; Institut Universitaire de France (IUF), Paris, France
Chastel, Olivier; Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, Villiers en bois, France
Dietz, Rune; Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, Roskilde, Denmark
Evans, Marlene; Environment and Climate Change Canada, Saskatoon, Canada
Evenset, Anita; Akvaplan-niva AS, Tromsø, Norway
Ferguson, Steven H.; Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Canada ; Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
Fort, Jérôme; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, La Rochelle, France
Grémillet, David; Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, Villiers en bois, France ; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
Houde, Magali; Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Canada
Letcher, Robert J.; Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, Canada
Loseto, Lisa; Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Canada
Muir, Derek; Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Canada
Pinzone, Marianna ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Poste, Amanda; Norwegian Institute for Water Research (NIVA), Tromsø, Norway
Routti, Heli; Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Sonne, Christian; Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, Roskilde, Denmark
Stern, Gary; Centre for Earth Observation Sciences (CEOS), University of Manitoba, Winnipeg, Canada
Rigét, Frank F.; Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, Roskilde, Denmark
The research that produced the data used in the assessment was supported by a number of national monitoring programs and scientific agencies, but did not receive a specific grant to produce the AMAP assessment or this publication. The programs and agencies providing support included: Canada: Northern Contaminants Program (NCP, Crown-Indigenous Relations and Northern Affairs Canada), Environment and Climate Change Canada (ECCC), Fisheries and Oceans Canada (DFO); Denmark (Greenland and the Faroe Islands): Danish Environmental Support to the Arctic (DANCEA, formerly Danish Cooperation for Environment in the Arctic); Iceland: the Icelandic National Monitoring Programme; Norway: the Norwegian Ministry of Climate and Environment, the Norwegian Polar Institute, the Norwegian Research Council, the Fram Centre, Institut Polaire Français, French National Research Agency (ANR), Centre of Biological Studies Chizé (CEBC), BNP Paribas Foundation (SENSEI); Sweden: Swedish National Monitoring Programme for Contaminants in Biota. Additional funding for research on East Greenland little auks was provided by the French Polar Institute, the European Commission, and ARCTOX.We would like to thank the governments and national programs in the participating countries for funding and ongoing support of this work, and for contributions to logistical support for AMAP. We extend gratitude to all of the Northern and Arctic communities and local community councils and organizations such as the Hunters and Trappers Committees, Organizations and Associations for their contributions and support of research in their regions. Special thanks to all of the Northern and Indigenous hunters, project leaders, and participants for contributing their expertise and knowledge and for the collection of biological samples. In addition to the data sources referenced in the Supplemental Information, the following people/groups are thanked for their contributions to this study: Canada: Birgit Braune, Paloma Carvalho, Amber Gleason, Jane Kirk, Cortney Watt; Denmark/Greenland: Krishna Das, Sandra Drewes, Sigga Joensen; Faroe Islands: Katrin Hoydal; Norway: Jon Aars, Magnus Andersen, Aurore Aubail, Claus Bech, Jan Ove Bustnes, Andrew Derocher, Igor Eulaers, Eva Fuglei, Geir Wing Gabrielsen, Ingeborg Hallanger, Anna Lippold, Børge Moe, Sabrina Tartu, Øystein Wiig; Sweden: Sara Danielsson, Suzanne Faxneld; and others who voluntarily contributed data to the assessment through the ICES database. Gratitude is also extended to all past and present technicians, database managers and others that have contributed to building and maintaining these time series over the last several decades, including those at ICES for preparing data from the AMAP data archives.
AMAP, AMAP Assessment 2011: Mercury in the Arctic. 2011, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway xiv + 193 pp.
AMAP, AMAP Assessment 2015: Human Health in the Arctic. 2015, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway vii + 165 pp.
AMAP, AMAP assessment data portal. Updated January 2020. Accessed January 2021 https://www.amap.no/ahat, 2020.
AMAP, AMAP Assessment 2021: Mercury in the Arctic. 2021, Arctic Monitoring and Assessment Programme (AMAP), Tromso, Norway 324 pp.
Amélineau, F., Grémillet, D., Harding, A.M.A., Walkusz, W., Choquet, R., Fort, J., Arctic climate change and pollution impact little auk foraging and fitness across a decade. Sci. Rep.-UK, 9(1), 2019, 1014.
Barst, B.D., Dietz, R., Basu, N., Chételat, J., Eulaers, I., Wilson, S., What are the toxicological effects of mercury in Arctic biota? Part 3: Fish and invertebrates. Sci. Total Environ., 836, 2022, 155702, 10.1016/j.scitotenv.2022.155702 (In this issue).
Basu, N., Abass, K., Dietz, R., Krummel, E., Rautio, A., Weihe, P., The impact of mercury contamination on human health in the Arctic: a state of the science review. Sci. Total Environ., 2022, 10.1016/j.scitotenv.2022.154793 (this issue).
Bignert, A., Riget, F., Braune, B., Outridge, P., Wilson, S., Recent temporal trend monitoring of mercury in Arctic biota – how powerful are the existing data sets?. J. Environ. Monitor. 6 (2004), 351–355.
Braune, B., Chételat, J., Amyot, M., Brown, T., Clayden, M., Evans, M., Fisk, A., Gaden, A., Girard, C., Hare, A., Kirk, J., Lehnherr, I., Letcher, R., Loseto, L., Macdonald, R., Mann, E., McMeans, B., Muir, D., O'Driscoll, N., Poulain, A., Reimer, K., Stern, G., Mercury in the marine environment of the Canadian Arctic: review of recent findings. Sci. Total Environ. 509–510 (2015), 67–90.
Braune, B.M., Gaston, A.J., Mallory, M.L., Temporal trends of mercury in eggs of five sympatrically breeding seabird species in the Canadian Arctic. Environ. Pollut. 214 (2016), 124–131.
Burnham, K.P., Anderson, D.R., Model Selection and Inference: A Practical Information-Theoretic Approach. 2nd edition, 2002, Springer-Verlag, New York, 10.1007/b97636.
Carrie, J., Wang, F., Sanei, H., Macdonald, R.W., Outridge, P.M., Stern, G.A., Increasing contaminant burdens in an Arctic fish, burbot (Lota lota), in a warming climate. Environ. Sci. Technol. 44:1 (2010), 316–322.
Chastel, O., Ackerman, J., Albert, C., Barst, B.D., Basu, N., Boertmann, D., Bustnes, J., Bustamante, P., Dietz, R., Eagles-Smith, C.A., Eulaers, I., Fort, J., Gabrielsen, G.W., Letcher, R.J., Gilchrist, G., Merkel, F., Mosbech, A., Søndergaard, J., Wilson, S., What are the toxicological effects of mercury in Arctic biota? Part 2: birds. Submitted to Sci. Total Environ., 2022 (In this issue).
Chételat, J., Cloutier, L., Amyot, M., Carbon sources for lake food webs in the Canadian high Arctic and other regions of Arctic North America. Polar Biol. 33:8 (2010), 1111–1123.
Chételat, J., Amyot, M., Arp, P., Blais, J.M., Depew, D., Emmerton, C.A., Evans, M., Gamberg, M., Gantner, N., Girard, C., Graydon, J., Kirk, J., Lean, D., Lehnherr, I., Muir, D., Nasr, M., Poulain, A.J., Power, M., Roach, P., Stern, G., Swanson, H., van der Velden, S., Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate. Sci. Total Environ. 509–510 (2015), 41–66.
Chételat, J., Richardson, M.C., MacMillan, G.A., Amyot, M., Poulain, A.J., Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to Arctic lakes. Environ. Sci. Technol. 52:1 (2018), 79–88.
Chételat, J., McKinney, M., Chételat, J., Amyot, M., Dastoor, A., Douglas, T., Heimbürger-Boavida, Lars-Eric, Kirk, J., Kahilainen, K., Outridge, P., Pelletier, N., Skov, H., St. Pierre, K., Vuorenmaa, J., Wang, F., Climate change and mercury in the Arctic: abiotic interactions. Sci. Total Environ., 824, 2022, 153715, 10.1016/j.scitotenv.2022.153715 (In this issue).
Dastoor, A., Travnikov, O., Angot, H., Ryjkov, A., Christensen, J., Chetelat, J., Dibble, T., What are the transport pathways, deposition to various surfaces, and deposition source attribution with respect to emissions?. Submitted to Sci. Total Environ., 2022 (In this issue).
Dietz, R., Letcher, R.J., Dastnau, S., Desforges, J.-P., Eulaers, I., Sonne, C., Wilson, S., Andreasen, B., Asvid, A., Blevin, P., Ciesielski, T., Danielsen, S., Dam, M., Das, K., Gamberg, M., Gantner, N., Hallanger, I., Heide-Jørgensen, M., Houde, M., Hoydal, K., Hudelson, K., Jenssen, B., Loseto, L., Morris, A.D., Moe, B., Muir, D.C.G., Nielsen, N., Pinzone, M., Rigét, F.F., Roos, A., Routti, H., Siebert, U., Stenson, G., Stern, G., Strand, J., Søndergaard, J., Tartu, S., Treu, G., Watt, C., Víking, G., A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals. Sci. Total Environ., 829, 2022, 154445, 10.1016/j.scitotenv.2022.154445 (In this issue).
Ehrich, D., Ims, R., Yoccoz, N., Lecomte, N., Killengreen, S., Fuglei, E., Rodnikova, A., Ebbinge, B., Menyushina, I., Nolet, B., Pokrovsky, I., Popov, I., Schmidt, N., Sokolov, A., Sokolova, N., Sokolov, V., What can stable isotope analysis of top predator tissues contribute to monitoring of tundra ecosystems?. Ecosystems 18 (2015), 404–416.
Eide, N.E., Eid, P.M., Prestrud, P., Swenson, J.E., Dietary responses of arctic foxes Alopex lagopus to changing prey availability across an Arctic landscape. Wildlife Biol. 11 (2005), 109–121.
Evans, M., Muir, D., Brua, R.B., Keating, J., Wang, X., Mercury trends in predatory fish in Great Slave Lake: the influence of temperature and other climate drivers. Environ. Sci. Technol. 47:22 (2013), 12793–12801.
Evans, M.S., Muir, D.C.G., Keating, J., Wang, X., Anadromous char as an alternate food choice to marine animals: a synthesis of hg concentrations, population features and other influencing factors. Sci. Total Environ. 509–510 (2015), 175–194.
Evers, D.C., Keane, S.E., Basu, N., Buck, D., Evaluating the effectiveness of the Minamata convention on mercury: principles and recommendations for next steps. Sci. Total Environ. 569–570 (2016), 888–903.
Fort, J., Grémillet, D., Traisnel, G., Amelineau, F., Bustamante, P., Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?. Environ. Pollut. 211 (2016), 382–388.
Foster, K.L., Braune, B.M., Gaston, A.J., Mallory, M.L., Climate influence on mercury in Arctic seabirds. Sci. Total Environ., 693, 2019, 133569.
Frafjord, K., Food habits of arctic foxes (Alopex Lagopus) on the western coast of Svalbard. Arctic 46 (1993), 49–54.
Fryer, R.J., Nicholson, M.D., Using smoothers for comprehensive assessments of contaminant time series in marine biota. ICES J. Mar. Sci. 56 (1999), 779–790.
Gamberg, M., Chételat, J., Poulain, A.J., Zdanowicz, C., Zheng, J., Mercury in the Canadian Arctic terrestrial environment: an update. Sci. Total Environ. 509–510 (2015), 28–40.
Gamberg, M., Pratte, I., Brammer, J., Cuyler, C., Elkin, B., Gurney, K., Kutz, S., Larter, N.C., Muir, D., Wang, X., Provencher, J.F., Renal trace elements in barren-ground caribou subpopulations: temporal trends and differing effects of sex, age and season. Sci. Total Environ., 724, 2020, 138305.
Grémillet, D., Fort, J., Amélineau, F., Zakharova, E., Le Bot, T., Sala, E., Gavrilo, M., Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Chang. Biol. 21:3 (2015), 1116–1123.
Hallanger, I.G., Fuglei, E., Yoccoz, N.G., Pedersen, Å.Ø., König, M., Routti, H., Temporal trend of mercury in relation to feeding habits and food availability in Arctic foxes (Vulpes lagopus) from Svalbard, Norway. Sci. Total Environ. 670 (2019), 1125–1132.
Harley, J., Lieske, C., Bhojwani, S., Castellini, J.M., López, J.A., O'Hara, T.M., Mercury and methylmercury distribution in tissues of sculpins from the Bering Sea. Polar Biol. 38:9 (2015), 1535–1543.
Houde, M., Taranu, Z., Wang, X., Young, B., Gagnon, P., Ferguson, S.H., Muir, D.C.G., Mercury in ringed seals (Pusa hispida) from the Canadian Arctic in relation to time and climate parameters. Environ. Toxicol. Chem., 39(12), 2020 2562-2474.
Houde, M., Brammer, J., Brown, T., Chételat, J., Dahl, P., Dietz, R., Evans, M., Gamberg, M., Gauthier, M.-J., Grey, L., Hauptmann, A., Heath, J.P., Henri, D.A., Kirk, J., Laird, B., Lemire, M., Lennert, A., Letcher, R.J., Lord, S., Loseto, L., MacMillan, G., Mikaelsson, S., Mutter, E., Mustonen, T., O'Hara, T., Ostertag, S., Robards, M., Roberts, S., Sudlovenick, E., Swanson, H., Smith, M., Stimmelmayr, R., Thomas, P., Shadrin, V., Walker, V., Whiting, A., The importance of Indigenous Peoples’ contributions to the research and monitoring of mercury in the Arctic – examples of collaboration. Submitted to Sci. Total Environ., 2022 (In this issue).
Hudelson, K.E., Muir, D.C.G., Drevnick, P.E., Köck, G., Iqaluk, D., Wang, X., Kirk, J.L., Barst, B.D., Grgicak-Mannion, A., Shearon, R., Fisk, A.T., Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada. Sci. Total Environ. 678 (2019), 801–812.
International Council for the Exploration of the Sea (ICES). DOME marine environment [database]. Available at: https://www.ices.dk/data/data-portals/Pages/DOME.aspx, 2020.
Jonsson, S., Nerentorp, M., Wang, F., Bravo, A., Cairns, W., Chételat, J., Douglas, T., Lescord, G., Obrist, D., Outridge, P., St Pierre, K., Ukonmaanaho, L., Zdanowicz, C., Heimburger, L.-E., Processes affecting mercury transformation and biotic uptake in the Arctic. Submitted to Sci. Total Environ., 2022 (In this issue).
Kirk, J.L., Lehnherr, I., Andersson, M., Braune, B.M., Chan, L., Dastoor, A.P., Durnford, D., Gleason, A.L., Loseto, L.L., Steffen, A., St Louis, V.L., Mercury in Arctic marine ecosystems: sources, pathways and exposure. Environ. Res. 119 (2012), 64–87, 10.1016/j.envres.2012.08.012.
Lippold, A., Aars, J., Andersen, M., Aubail, A., Derocher, A.E., Dietz, R., Eulaers, I., Sonne, C., Welker, J.M., Wiig, Ø., Routti, H., Two decades of mercury concentrations in Barents Sea polar bears (Ursus maritimus) in relation to dietary carbon, sulfur, and nitrogen. Environ. Sci. Technol. 54 (2020), 7388–7397, 10.1021/acs.est.0c01848.
Loseto, L.L., Stern, G.A., Macdonald, R.W., Distant drivers or local signals: where do mercury trends in western Arctic belugas originate?. Sci. Total Environ. 509–510 (2015), 226–236.
MacSween, K., Aas, W., Kemp, K., Kyllönen, K., Pfaffhuber, K.A., Skov, H., Steffan, S., Stupple, G., What are the temporal trends of mercury in Arctic air and precipitation?. In Press, Sci. Total Environ., 2022, 155802, 10.1016/j.scitotenv.2022.155802 (In this issue).
McKinney, M.A., Atwood, T.C., Pedro, S., Peacock, E., Ecological change drives a decline in mercury concentrations in southern Beaufort Sea polar bears. Environ. Sci. Technol. 51:14 (2017), 7814–7822.
McKinney, M., Chételat, J., Burke, S.M., Elliott, K., Fernie, K., Houde, M., Kahilainen, K., Letcher, R.J., Morris, A.D., Muir, D.C.G., Routti, H., Yurkowski, D., Climate change and mercury in the Arctic: biotic interactions. Sci. Total Environ., 834, 2022, 155221, 10.1016/j.scitotenv.2022.155221 (In this issue).
Morris, A.D., Braune, B.M., Gamberg, M., Stow, J., O'Brien, J., Letcher, R.J., Temporal change and the influence of climate and weather factors on mercury concentrations in Hudson Bay polar bears, caribou, and seabirds. Environ. Res., 207, 2022, 112169, 10.1016/j.envres.2021.112169.
Muir, D., Köck, G., Kirk, J., Temporal trends of persistent organic pollutants and mercury in landlocked char in High Arctic lakes. Beardsall, A., Morris, A.D., (eds.) Synopsis of Research Conducted under the 2017-2018 Northern Contaminants Program, 2021, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, QC, Canada, 199–204 Available online: https://pubs.aina.ucalgary.ca/ncp/Synopsis20172018.pdf.
R Core Team, R: a language and environment for statistical computing. URL, 2020, R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/.
Rigét, F., Vorkamp, K., Muir, D., Temporal trends of contaminants in Arctic char (Salvelinus alpinus) from a small lake, Southwest Greenland during a warming climate. J. Environ. Monit. 12:12 (2010), 2252–2258.
Rigét, F., Braune, B., Bignert, A., Wilson, S., Aars, J., Born, E., Dam, M., Dietz, R., Evans, M., Evans, T., Gamberg, M., Gantner, N., Green, N., Gunnlaugsdóttir, H., Kannan, K., Letcher, R., Muir, D., Roach, P., Sonne, C., Stern, G., Wiig, Ø., Temporal trends of hg in Arctic biota, an update. Sci. Total Environ. 409 (2011), 3520–3526.
Rigét, F.F., Dietz, R., Hobson, K.A., Temporal trends of mercury in Greenland ringed seal populations in a warming climate. J. Environ. Monit. 14:12 (2012), 3249–3256.
Sénéchal, É., Bêty, J., Gilchrist, H.G., Hobson, K.A., Jamieson, S.E., Do purely capital layers exist among flying birds? Evidence of exogenous contribution to arctic-nesting common eider eggs. Oecologia 165 (2011), 593–604.
Tartu, S., Blévin, P., Bustamante, P., Angelier, F., Bech, C., Bustnes, J.O., Chierici, M., Fransson, A., Gabrielsen, G.W., Goutte, A., Moe, B., Sauser, C., Sire, J., Barbraud, C., Chastel, O., A U-turn for mercury concentrations over 20 years: how do environmental conditions affect exposure in Arctic seabirds?. Environ. Sci. Technol. 56 (2022), 2443–2454, 10.1021/acs.est.1c07633.
United Nations Environment Programme (UNEP). Minamata convention on Mercury. Decision MC-2/10 - effectiveness evaluation. Accessed April 2022 https://staging.minamata.edw.ro/en/documents/effectiveness-evaluation, 2018.
United Nations Environment Programme (UNEP). Minamata convention on Mercury. Information session on monitoring guidance for the effectiveness evaluation. On-line Presentation. Accessed April 2022 https://www.mercuryconvention.org/en/resources/monitoring-guidance-effectiveness-evaluation, 2020.
Vihtakari, M., Welcker, J., Moe, B., Chastel, O., Tartu, S., Hop, H., Bech, C., Descamps, S., Gabrielsen, G.W., Black-legged kittiwakes as messengers of atlantification in the Arctic. Sci. Rep., 8, 2018, 1178, 10.1038/s41598-017-19118-8.
Wang, K., Munson, K.M., Beaupré-Laperrière, A., Mucci, A., Macdonald, R.W., Wang, F., Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Sci. Rep., 8, 2018, 144465.