Applied Mathematics; Artificial Intelligence; Computer Science Applications; General Neuroscience
Abstract :
Spontaneous brain activity changes across states of consciousness. A particular consciousness-mediated configuration is the anticorrelations between the default mode network and other brain regions. What this antagonistic organization implies about consciousness to date remains inconclusive. In this Perspective Article, we propose that anticorrelations are the physiological expression of the concept of segregation, namely the brain’s capacity to show selectivity in the way areas will be functionally connected. We postulate that this effect is mediated by the process of neural inhibition, by regulating global and local inhibitory activity. While recognizing that this effect can also result from other mechanisms, neural inhibition helps the understanding of how network metastability is affected after disrupting local and global neural balance. In combination with relevant theories of consciousness, we suggest that anticorrelations are a physiological prior that can work as a marker of preserved consciousness. We predict that if the brain is not in a state to host anticorrelations, then most likely the individual does not entertain subjective experience. We believe that this link between anticorrelations and the underlying physiology will help not only to comprehend how consciousness happens, but also conceptualize effective interventions for treating consciousness disorders in which anticorrelations seem particularly affected.
Disciplines :
Neurosciences & behavior
Author, co-author :
Demertzi, Athina ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Physiology of Cognition ; Fund for Scientific Research, FNRS, Bruxelles, Belgium
Kucyi, Aaron ; Department of Psychology, Northeastern University, Boston, MA, USA
Ponce-Alvarez, Adrián ; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
Keliris, Georgios A. ; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
Whitfield-Gabrieli, Susan; Department of Psychology, Northeastern University, Boston, MA, USA ; Northeastern University Biomedical Imaging Center (NUBIC), Northeastern University Interdisciplinary Science and Engineering Complex (ISEC), Boston, MA, USA
Deco, Gustavo ; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain ; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain ; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ; Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Melbourne, VIC, Australia
Adhikari, M. H., Belloy, M. E., Van der Linden, A., Keliris, G. A., & Verhoye, M. (2021). Resting-state co-activation patterns as promising candidates for prediction of Alzheimer’s disease in aged mice. Frontiers in Neural Circuits, 14, 612529. https://doi.org/10.3389/fncir.2020.612529, PubMed: 33551755
Anderson, J. S., Druzgal, T. J., Lopez-Larson, M., Jeong, E. K., Desai, K., & Yurgelun-Todd, D. (2011). Network anticorrelations, global regression, and phase-shifted soft tissue correction. Human Brain Mapping, 32(6), 919–934. https://doi.org/10.1002/hbm.21079, PubMed: 20533557
Arthurs, O. J., & Boniface, S. (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosci-ences, 25(1), 27–31. https://doi.org/10.1016/s0166-2236(00) 01995-0, PubMed: 11801335
Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., & Dehaene, S. (2014). Signature of consciousness in the dynamics of resting-state brain activity. Proceedings of the National Academy of Sciences, 112(3), 887–892. https://doi.org/10.1073/pnas.1418031112, PubMed: 25561541
Bauer, C. C. C., Okano, K., Ghosh, S. S., Lee, Y. J., Melero, H., Angeles, C. d. L., Nestor, P. G., Del Re, E. C., Northoff, G., Niznikiewicz, M. A., & Whitfield-Gabrieli, S. (2020). Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network-preliminary evidence. Psychi at ry Research, 284, 112770. https://doi.org/10.1016/j.psychres.2020.112770, PubMed: 32004893
Bauer, C. C. C., Whitfield-Gabrieli, S., Díaz, J. L., Pasaye, E. H., & Barrios, F. A. (2019). From state-to-trait meditation: Reconfiguration of central executive and default mode networks. ENeuro, 6(6). https://doi.org/10.1523/ENEURO.0335-18.2019, PubMed: 31694816
Beaulieu, C., & Colonnier, M. (1985). A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. Journal of Comparative Neurology, 231(2), 180–189. https://doi.org/10.1002/cne.902310206, PubMed: 3968234
Belloy, M. E., Naeyaert, M., Abbas, A., Shah, D., Vanreusel, V., van Audekerke, J., Keilholz, S. D., Keliris, G. A., Van der Linden, A., & Verhoye, M. (2018a). Dynamic resting state fMRI analysis in mice reveals a set of quasi-periodic patterns and illustrates their relationship with the global signal. NeuroImage, 180(Pt B), 463–484. https://doi.org/10.1016/j.neuroimage.2018.01.075, PubMed: 29454935
Belloy, M. E., Shah, D., Abbas, A., Kashyap, A., Roßner, S., Van der Linden, A., Keilholz, S. D., Keliris, G. A., & Verhoye, M. (2018b). Quasi-periodic patterns of neural activity improve classification of Alzheimer’s disease in mice. Scientific Reports, 8(1), 10024. https://doi.org/10.1038/s41598-018-28237-9, PubMed: 29968786
Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T. T., Moonen, G., Hustinx, R., Maquet, P., & Laureys, S. (2008). Intrinsic brain activity in altered states of consciousness: How conscious is the default mode of brain function? Annals of the New York Academy of Sciences, 1129, 119–129. https://doi.org/10.1196/annals.1417.015, PubMed: 18591474
Boveroux, P., Vanhaudenhuyse, A., Bruno, M. A., Noirhomme, Q., Lauwick, S., Luxen, A., Degueldre, C., Plenevaux, A., Schnakers, C., Phillips, C., Brichant, J. F., Bonhomme, V., Maquet, P., Greicius, M. D., Laureys, S., & Boly, M. (2010). Breakdown of within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology, 113(5), 1038–1053. https://doi.org/10.1097/ALN.0b013e3181f697f5, PubMed: 20885292
Chai, X. J., Ofen, N., Gabrieli, J. D. E., & Whitfield-Gabrieli, S. (2014). Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. Journal of Cognitive Neuroscience, 26(3), 501–513. https://doi.org/10.1162/jocn_a_00517, PubMed: 24188367
Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuro-Image, 50(1), 81–98. https://doi.org/10.1016/j.neuroimage.2009.12.011, PubMed: 20006716
Chang, C., Liu, Z., Chen, M. C., Liu, X., & Duyn, J. H. (2013). EEG correlates of time-varying BOLD functional connectivity. Neuro-Image, 72, 227–236. https://doi.org/10.1016/j.neuroimage.2013.01.049, PubMed: 23376790
Changeux, J.-P. (2017). Climbing brain levels of organisation from genes to consciousness. Trends in Cognitive Sciences, 21(3), 168–181. https://doi.org/10.1016/j.tics.2017.01.004, PubMed: 28161289
Chow, H. M., Horovitz, S. G., Carr, W. S., Picchioni, D., Coddington, N., Fukunaga, M., Xu, Y., Balkin, T. J., Duyn, J. H., & Braun, A. R. (2013). Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10300–10305. https://doi.org/10.1073/pnas.1217691110, PubMed: 23733938
Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48), 12083–12094. https://doi.org/10.1523/JNEUROSCI.2965-15.2016, PubMed: 27903719
Colenbier, N., Van de Steen, F., Uddin, L. Q., Poldrack, R. A., Calhoun, V. D., & Marinazzo, D. (2020). Disambiguating the role of blood flow and global signal with partial information decomposition. NeuroImage, 213, 116699. https://doi.org/10.1016/j.neuroimage.2020.116699, PubMed: 32179104
Daitch, A. L., & Parvizi, J. (2018). Spatial and temporal heterogeneity of neural responses in human posteromedial cortex. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4785–4790. https://doi.org/10.1073/pnas.1721714115, PubMed: 29666262
De Havas, J. A., Parimal, S., Soon, C. S., & Chee, M. W. L. (2012). Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuro-Image, 59(2), 1745–1751. https://doi.org/10.1016/j.neuroimage.2011.08.026, PubMed: 21872664
Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., & Kötter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctua-tions. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10302–10307. https://doi.org/10.1073/pnas.0901831106, PubMed: 19497858
Deco, G., Kringelbach, M. L., Arnatkeviciute, A., Oldham, S., Sabaroedin, K., Rogasch, N. C., Aquino, K. M., & Fornito, A. (2021). Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. Science Advances, 7(29), eabf4752. https://doi.org/10.1126/sciadv.abf4752, PubMed: 34261652
Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini, D., & Corbetta, M. (2014). How local excitation-inhibition ratio impacts the whole brain dynamics. Journal of Neuroscience, 34(23), 7886–7898. https://doi.org/10.1523/JNEUROSCI.5068-13.2014, PubMed: 24899711
DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39(6), 563–607. https://doi.org/10.1016/0301-0082(92)90015-7, PubMed: 1410442
Dehaene, S., Sergent, C., & Changeux, J.-P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 100(14), 8520–8525. https://doi.org/10.1073/pnas.1332574100, PubMed: 12829797
Demertzi, A., Sitt, J. D., Sarasso, S., & Pinxten, W. (2017). Measuring states of pathological (un)consciousness: Research dimensions, clinical applications and ethics. Neuroscience of Consciousness, 3(1), 1–13. ht t ps: / / doi. org/10. 1093/nc/ ni x010, PubMed: 30042843
Demertzi, A., Soddu, A., Faymonville, M., Bahri, M. A., Gosseries, O., Vanhaudenhuyse, A., Phillips, C., Maquet, P., Noirhomme, Q., Luxen, A., & Laureys, S. (2011). Hypnotic modulation of resting state fMRI default mode and extrinsic network con-nectivity. Progress in Brain Research, 193, 309–322. https://doi. or g/10. 1016/B978-0-444-53839-0. 00020-X, PubMed: 21854971
Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., Martial, C., Fernández-Espejo, D., Rohaut, B., Voss, H. U., Schiff, N. D., Owen, A. M., Laureys, S., Naccache, L., & Sitt, J. D. (2019). Human consciousness is supported by dynamic complex patterns of brain signal coordination. Science Advances, 5(2), eaat 7603. https://doi.org/10. 1126/sci adv.aat7603, PubMed: 30775433
Desjardins, A. E., Kiehl, K. A., & Liddle, P. F. (2001). Removal of confounding effects of global signal in functional MRI analyses. NeuroImage, 13(4), 751–758. https://doi.org/10.1006/nimg.2000.0719, PubMed: 11305902
Di Perri, C., Bahri, M. A., Amico, E., Thibaut, A., Heine, L., Antonopoulos, G., Charland-Verville, V., Wannez, S., Gomez, F., Hustinx, R., Tshibanda, L., Demertzi, A., Soddu, A., & Laureys, S. (2016). Neural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional mul-timodal imaging study. The Lancet Neurology, 15(8), 830–842. https://doi.org/10.1016/S1474-4422(16)00111-3, PubMed: 27131917
Elton, A., & Gao, W. (2015). Task-positive functional connectivity of the default mode network transcends task domain. Journal of Cognitive Neuroscience, 27(12), 2369–2381. https://doi.org/10.1162/jocn_a_00859, PubMed: 26244722
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102, PubMed: 15976020
Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain net-works. Journal of Neurophysiology, 101, 3270–3283. https://doi.org/10.1152/jn.90777.2008, PubMed: 19339462
Gozzi, A., & Schwarz, A. J. (2016). Large-scale functional connectivity networks in the rodent brain. NeuroImage, 127, 496–509. https://doi.org/10.1016/j.neuroimage.2015.12.017, PubMed: 26706448
Heine, L., Soddu, A., Gómez, F., Vanhaudenhuyse, A., Tshibanda, L., Thonnard, M., Charland-Verville, V., Kirsch, M., Laureys, S., & Demertzi, A. (2012). Resting state networks and consciousness: Alterations of multiple resting state network connectivity in phys-iological, pharmacological, and pathological consciousness states. Frontiers in Psychology, 3, 295. https://doi.org/10.3389/fpsyg.2012.00295, PubMed: 22969735
Hinz, R., Peeters, L. M., Shah, D., Missault, S., Belloy, M., Vanreusel, V., Malekzadeh, M., Verhoye, M., Van der Linden, A., & Keliris, G. A. (2019). Bottom-up sensory processing can induce negative BOLD responses and reduce functional connectivity in nodes of the default mode-like network in rats. NeuroImage, 197, 167–176. https://doi.org/10.1016/j.neuroimage.2019.04.065, PubMed: 31029872
Huang, Z., Zhang, J., Wu, J., Mashour, G. A., & Hudetz, A. G. (2020). Temporal circuit of macroscale dynamic brain activity supports human consciousness. Science Advances, 6(11), eaaz0087. https://doi.org/10.1126/sciadv.aaz0087, PubMed: 32195349
Hutchison, R. M., & Everling, S. (2012). Monkey in the middle: Why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in Neuroanatomy, 6, 29. https://doi.org/10.3389/fnana.2012.00029, PubMed: 22855672
Isaacson, J. S., & Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron, 72(2), 231–243. https://doi.org/10.1016/j.neuron.2011.09.027, PubMed: 22017986
Joglekar, M. R., Mejias, J. F., Yang, G. R., & Wang, X.-J. (2018). Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron, 98(1), 222–234. https://doi.org/10.1016/j.neuron.2018.02.031, PubMed: 29576389
Karahanoğlu, F. I., & Van De Ville, D. (2015). Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nature Communications, 6, 7751. ht t ps: / / doi. org/10. 1038/ncomms8751, PubMed: 26178017
Keller, C. J., Bickel, S., Honey, C. J., Groppe, D. M., Entz, L., Cr addock, R. C., Lado, F. A., Kelly, C., Milham, M., & Mehta, A. D. (2013). Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. Journal of Neuroscience, 33(15), 6333–6342. https://doi.org/10.1523/JNEUROSCI.4837-12.2013, PubMed: 23575832
Keller, J. B., Hedden, T., Thompson, T. W., Anteraper, S. A., Gabrieli, J. D. E., & Whitfield-Gabrieli, S. (2015). Resting-state anticorrelations between medial and lateral prefrontal cortex: Association with working memory, aging, and individual differ-ences. Cortex, 64, 271–280. https://doi.org/10.1016/j.cortex.2014.12.001, PubMed: 25562175
Kucyi, A., Daitch, A., Raccah, O., Zhao, B., Zhang, C., Esterman, M., Zeineh, M., Halpern, C. H., Zhang, K., Zhang, J., & Parvizi, J. (2020). Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations. Nature Communications, 11(1), 325. https://doi.org/10.1038/s41467-019-14166-2, PubMed: 31949140
Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27(3), 1831–1840. https://doi.org/10.1093/cercor/bhw029, PubMed: 26874182
Kucyi, A., & Parvizi, J. (2020). Pupillary dynamics link spontaneous and task-evoked activations recorded directly from human insula. Journal of Neuroscience, 40(32), 6207–6218. https://doi.org/10.1523/JNEUROSCI.0435-20.2020, PubMed: 32631937
Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A. J., Sabuncu, M. R., Ge, T., & Yeo, B. T. T. (2019). Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage, 196, 126–141. https://doi.org/10.1016/j.neuroimage.2019.04.016, PubMed: 30974241
Liu, T. T., Nalci, A., & Falahpour, M. (2017). The global signal in fMRI: Nuisance or Information? NeuroImage, 150, 213–229. https://doi.org/10.1016/j.neuroimage.2017.02.036, PubMed: 28213118
Liu, X., de Zwart, J. A., Schölvinck, M. L., Chang, C., Ye, F. Q., Leopold, D. A., & Duyn, J. H. (2018). Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nature Communications, 9(1), 395. https://doi.org/10.1038/s41467-017-02815-3, PubMed: 29374172
Liu, X., & Duyn, J. H. (2013). Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4392–4397. https://doi.org/10.1073/pnas.1216856110, PubMed: 23440216
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. https://doi.org/10.1038/nature06976, PubMed: 18548064
Luppi, A. I., Craig, M. M., Pappas, I., Finoia, P., Williams, G. B., Allanson, J., Pickard, J. D., Owen, A. M., Naci, L., Menon, D. K., & Stamatakis, E. A. (2019). Consciousness-specific dynamic interactions of brain integration and functional diver-sity. Nature Communications, 10(1), 4616. https://doi.org/10.1038/s41467-019-12658-9, PubMed: 31601811
Manning, J. R., Jacobs, J., Fried, I., & Kahana, M. J. (2009). Broad-band shifts in local field potential power spectra are correlated with single-neuron spiking in humans. Journal of Neuroscience, 29(43), 13613–13620. https://doi.org/10.1523/JNEUROSCI.2041-09.2009, PubMed: 19864573
Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious processing and the global neuronal work-space hypothesis. Neuron, 105(5), 776–798. https://doi.org/10.1016/j.neuron.2020.01.026, PubMed: 32135090
Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks intro-duced? NeuroImage, 44(3), 893–905. https://doi.org/10.1016/j.neuroimage.2008.09.036, PubMed: 18976716
Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage, 154, 169–173. https://doi.org/10.1016/j.neuroimage.2016.11.052, PubMed: 27888059
Nir, T., Jacob, Y., Huang, K.-H., Schwartz, A. E., Brallier, J. W., Ahn, H., Kundu, P., Tang, C. Y., Delman, B. N., McCormick, P. J., Sano, M., Deiner, S., Baxter, M. G., & Mincer, J. S. (2020). Resting-state functional connectivity in early postanaesthesia recovery is characterised by globally reduced anticorrelations. British Journal of Anaesthesia, 125(4), 529–538. https://doi.org/10.1016/j.bja.2020.06.058, PubMed: 32800503
Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLoS Computational Biology, 10(5), e1003588. ht t ps: / / doi. org/10. 1371/j our nal. pcbi. 1003588, PubMed: 24811198
Ossandón, T., Jerbi, K., Vidal, J. R., Bayle, D. J., Henaff, M.-A., Jung, J., Minotti, L., Bertrand, O., Kahane, P., & Lachaux, J.-P. (2011). Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. Journal of Neuroscience, 31(41), 14521–14530. https://doi.org/10.1523/JNEUROSCI.2483-11.2011, PubMed: 21994368
Peeters, L. M., van den Berg, M., Hinz, R., Majumdar, G., Pintelon, I., & Keliris, G. A. (2020). Cholinergic modulation of the default mode like network in rats. IScience, 23(9), 101455. https://doi.org/10.1016/j.isci.2020.101455, PubMed: 32846343
Popa, D., Popescu, A. T., & Paré, D. (2009). Contrasting activity profile of two distributed cortical networks as a function of atten-tional demands. Journal of Neuroscience, 29(4), 1191–1201. https://doi.org/10.1523/JNEUROSCI.4867-08.2009, PubMed: 19176827
Power, J. D., Plitt, M., Laumann, T. O., & Martin, A. (2017). Sources and implications of whole-brain fMRI signals in humans. Neuro-Image, 146, 609–625. https://doi.org/10.1016/j.neuroimage.2016.09.038, PubMed: 27751941
Raccah, O., Daitch, A. L., Kucyi, A., & Parvizi, J. (2018). Direct cortical recordings suggest temporal order of task-evoked responses in human dorsal attention and default networks. Journal of Neu-roscience, 38(48), 10305–10313. https://doi.org/10.1523/JNEUROSCI.0079-18.2018, PubMed: 30315126
Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imag-ing. Annual Review of Neuroscience, 29(1), 449–476. https://doi.org/10.1146/annurev.neuro.29.051605.112819, PubMed: 16776593
Ramot, M., Fisch, L., Harel, M., Kipervasser, S., Andelman, F., Neufeld, M. Y., Kramer, U., Fried, I., & Malach, R. (2012). A widely distributed spectral signature of task-negative electrocor-ticography responses revealed during a visuomotor task in the human cortex. Journal of Neuroscience, 32(31), 10458–10469. https://doi.org/10.1523/JNEUROSCI.0877-12.2012, PubMed: 22855795
Scannell, J. W., & Young, M. P. (1999). Neuronal population activity and functional imaging. Proceedings of the Royal Society B: Biological Sciences, 266(1422), 875–881. https://doi.org/10.1098/rspb.1999.0718, PubMed: 10380677
Schölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A. (2010). Neural basis of global resting-state fMRI activity. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10238–10243. https://doi.org/10.1073/pnas.0913110107, PubMed: 20439733
Seth, A. K., Dienes, Z., Cleeremans, A., Overgaard, M., & Pessoa, L. (2008). Measuring consciousness: Relating behavioural and neu-rophysiological approaches. Trends in Cognitive Sciences, 12(8), 314–321. https://doi.org/10.1016/j.tics.2008.04.008, PubMed: 18606562
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2016). The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron, 92(2), 544–554. https://doi.org/10.1016/j.neuron.2016.09.018, PubMed: 27693256
Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23(2), 162–171. https://doi.org/10.1016/j.conb.2012.11.015, PubMed: 23294553
Spreng, R. N. (2012). The fallacy of a “task-negative” network. Frontiers in Psychology, 3, 145. https://doi.org/10.3389/fpsyg.2012.00145, PubMed: 22593750
Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S., Mildner, J., Luh, W.-M., & Turner, G. R. (2014). Goal-congruent default network activity facilitates cognitive control. Journal of Neuroscience, 34(42), 14108–14114. https://doi.org/10.1523/JNEUROSCI.2815-14.2014, PubMed: 25319706
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroI mage, 53(1), 303–317. ht t ps: / / doi. or g/10. 1016/j.neuroimage.2010.06.016, PubMed: 20600998
Sripada, C. S., Kessler, D., & Angstadt, M. (2014). Lag in maturation of the brain’s intrinsic functional architecture in attention-deficit/ hyperactivity disorder. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 111(39), 14259–14264. https://doi.org/10.1073/pnas.1407787111, PubMed: 25225387
Swanson, O. K., & Maffei, A. (2019). From hiring to firing: Activation of inhibitory neurons and their recruitment in behavior. Frontiers in Molecular Neuroscience, 12, 168. https://doi.org/10.3389/fnmol.2019.00168, PubMed: 31333413
Szabó, D., Czeibert, K., Kettinger, Á., Gácsi, M., Andics, A., Miklósi, Á., & Kubinyi, E. (2019). Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks. Scientific Reports, 9(1), 15270. https://doi.org/10.1038/s41598-019-51752-2, PubMed: 31649271
Threlkeld, Z. D., Bodien, Y. G., Rosenthal, E. S., Giacino, J. T., Nieto-Castanon, A., Wu, O., Whitfield-Gabrieli, S., & Edlow, B. L. (2018). Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex, 106, 299–308. https://doi.org/10.1016/j.cortex.2018.05.004, PubMed: 29871771
Uddin, L. Q. (2017). Mixed signals: On separating brain signal from noise. Trends in Cognitive Sciences, 21(6), 405–406. https://doi.org/10.1016/j.tics.2017.04.002, PubMed: 28461113
Uehara, T., Yamasaki, T., Okamoto, T., Koike, T., Kan, S., Miyauchi, S., Kira, J.-I., & Tobi matsu, S. (2014). Efficiency of a “small-world” brain network depends on consciousness level: A resting-state fMRI study. Cerebral Cortex, 24(6), 1529–1539. https://doi.org/10.1093/cercor/bht004, PubMed: 23349223
Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., Phillips, C., Soddu, A., Luxen, A., Moonen, G., & Laureys, S. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. Journal of Cognitive Neuroscience, 23(3), 570–578. https://doi.org/10.1162/jocn.2010.21488, PubMed: 20515407
Wen, H., & Liu, Z. (2016). Broadband electrophysiological dynamics contribute to global resting-State fMRI signal. Journal of Neuroscience, 36(22), 6030–6040. ht t ps: / / doi. or g/10. 1523/JNEUROSCI.0187-16.2016, PubMed: 27251624
Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2013). The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. NeuroImage, 83, 983–990. https:// doi. or g/10. 1016/j. neur oi mage. 2013. 07. 057, PubMed: 23899724
Yeo, B. T. T., Tandi, J., & Chee, M. W. L. (2015). Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. NeuroImage, 111, 147–158. https://doi.org/10.1016/j.neuroimage.2015.02.018, PubMed: 25700949
Zhang, J., Kucyi, A., Raya, J., Nielsen, A. N., Nomi, J. S., Damoiseaux, J. S., Greene, D. J., Horovitz, S. G., Uddin, L. Q., & Whitfield-Gabrieli, S. (2021). What have we really learned from functional connectivity in clinical populations? NeuroImage, 242, 118466. https://doi.org/10.1016/j.neuroimage.2021.118466, PubMed: 34389443
Zhu, D. C., Tarumi, T., Khan, M. A., & Zhang, R. (2015). Vascular coupling in resting-state FMRI: Evidence from multiple modalities. Journal of Cerebral Blood Flow & Metabolism, 35(12), 1910–1920. https://doi.org/10.1038/jcbfm.2015.166, PubMed: 26174326