Impact of the PEG length and PEGylation site on the structural, thermodynamic, thermal, and proteolytic stability of mono-PEGylated alpha-1 antitrypsin.
Liu, Xiao; Kouassi, Kobenan G W; Vanbever, Ritaet al.
2022 • In Protein Science: A Publication of the Protein Society, 31 (9), p. 4392
[en] Conjugation to polyethylene glycol (PEG) is a widely used approach to improve the therapeutic value of proteins essentially by prolonging their body residence time. PEGylation may however induce changes in the structure and/or the stability of proteins and thus on their function(s). The effects of PEGylation on the thermodynamic stability can either be positive (stabilization), negative (destabilization), or neutral (no effect). Moreover, various factors such as the PEG length and PEGylation site can influence the consequences of PEGylation on the structure and stability of proteins. In this study, the effects of PEGylation on the structure, stability, and polymerization of alpha1-antitrypsin (AAT) were investigated, using PEGs with different lengths, different structures (linear or 2-armed) and different linking chemistries (via amine or thiol) at two distinct positions of the sequence. The results show that whatever the size, position, and structure of PEG chains, PEGylation (a) does not induce significant changes in AAT structure (either at the secondary or tertiary level); (b) does not alter the stability of the native protein upon both chemical- and heat-induced denaturation; and (c) does not prevent AAT to fully refold and recover its activity following chemical denaturation. However, the propensity of AAT to aggregate upon heat treatment was significantly decreased by PEGylation, although PEGylation did not prevent the irreversible inactivation of the enzyme. Moreover, conjugation to PEG, especially 2-armed 40 kDa PEG, greatly improved the proteolytic resistance of AAT. PEGylation of AAT could be a promising strategy to prolong its half-life after infusion in AAT-deficient patients and thereby decrease the frequency of infusions.
Liu, Xiao; Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
Kouassi, Kobenan G W; Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
Vanbever, Rita ; Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
Dumoulin, Mireille ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Language :
English
Title :
Impact of the PEG length and PEGylation site on the structural, thermodynamic, thermal, and proteolytic stability of mono-PEGylated alpha-1 antitrypsin.
Publication date :
September 2022
Journal title :
Protein Science: A Publication of the Protein Society
Chapman KR, Chorostowska-Wynimko J, Koczulla AR, Ferrarotti I, McElvaney NG. Alpha 1 antitrypsin to treat lung disease in alpha 1 antitrypsin deficiency: Recent developments and clinical implications. Int J Chron Obstruct Pulmon Dis. 2018;13:419–432.
Korkmaz B, Attucci S, Jourdan M-L, Juliano L, Gauthier F. Inhibition of neutrophil elastase by alpha1-protease inhibitor at the surface of human polymorphonuclear neutrophils. J Immunol. 2005;175(5):3329–3338.
Duranton J, Bieth JG. Inhibition of proteinase 3 by alpha1-antitrypsin in vitro predicts very fast inhibition in vivo. Am J Respir Cell Mol Biol. 2003;29(1):57–61.
Padrines M, Schneider-Pozzer M, Bieth JG. Inhibition of neutrophil elastase by Alpha-1-proteinase inhibitor oxidized by activated neutrophils. Am Rev Respir Dis. 1989;139(3):783–790.
Tonelli AR, Brantly ML. Augmentation therapy in alpha-1 antitrypsin deficiency: Advances and controversies. Ther Adv Respir Dis. 2010;4(5):289–312.
Stolk J, Tov N, Chapman KR, et al. Efficacy and safety of inhaled α1-antitrypsin in patients with severe α1-antitrypsin deficiency and frequent exacerbations of COPD. Eur Respir J. 2019;54(5):1900673.
Pasut G, Veronese FM. State of the art in PEGylation: The great versatility achieved after forty years of research. J Control Release. 2012;161(2):461–472.
Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci. 2016;105(2):460–475.
Rondon A, Mahri S, Morales-Yanez F, Dumoulin M, Vanbever R. Protein engineering strategies for improved pharmacokinetics. Adv Funct Mater. 2021;31(44):2101633.
Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–1458.
Wu L, Ho SV, Wang W, et al. N-terminal mono-PEGylation of growth hormone antagonist: Correlation of PEG size and pharmacodynamic behavior. Int J Pharm. 2013;453(2):533–540.
Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–329.
Lawrence PB, Price JL. How PEGylation influences protein conformational stability. Curr Opin Chem Biol. 2016;34:88–94.
Frokjaer S, Otzen DE. Protein drug stability: A formulation challenge. Nat Rev Drug Discov. 2005;4(4):298–306.
Jain A, Ashbaugh HS. Helix stabilization of poly(ethylene glycol)-peptide conjugates. Biomacromolecules. 2011;12(7):2729–2734.
Price JL, Powers ET, Kelly JW. N-PEGylation of a reverse turn is stabilizing in multiple sequence contexts, unlike N-GlcNAcylation. ACS Chem Biol. 2011;6(11):1188–1192.
Rodríguez-Martínez JA, Solá RJ, Castillo B, et al. Stabilization of alpha-chymotrypsin upon PEGylation correlates with reduced structural dynamics. Biotechnol Bioeng. 2008;101(6):1142–1149.
García-Arellano H, Valderrama B, Saab-Rincón G, Vazquez-Duhalt R. High temperature biocatalysis by chemically modified cytochrome c. Bioconjug Chem. 2002;13(6):1336–1344.
Plesner B, Fee CJ, Westh P, Nielsen AD. Effects of PEG size on structure, function and stability of PEGylated BSA. Eur J Pharm Biopharm. 2011;79(2):399–405.
Rodríguez-Martínez JA, Rivera-Rivera I, Griebenow K. Prevention of benzyl alcohol-induced aggregation of chymotrypsinogen by PEGylation. J Pharm Pharmacol. 2011;63(6):800–805.
Shu JY, Tan C, DeGrado WF, Xu T. New design of helix bundle peptide-polymer conjugates. Biomacromolecules. 2008;9(8):2111–2117.
Lawrence PB, Gavrilov Y, Matthews SS, et al. Criteria for selecting PEGylation sites on proteins for higher thermodynamic and proteolytic stability. J Am Chem Soc. 2014;136(50):17547–17560.
Knaupp AS, Bottomley SP. Structural change in β-sheet A of Z α(1)-antitrypsin is responsible for accelerated polymerization and disease. J Mol Biol. 2011;413(4):888–898.
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30(Suppl 1):S162–S173.
Tew DJ, Bottomley SP. Probing the equilibrium denaturation of the serpin alpha(1)-antitrypsin with single tryptophan mutants; evidence for structure in the urea unfolded state. J Mol Biol. 2001;313(5):1161–1169.
Patschull AOM, Gooptu B, Ashford P, Daviter T, Nobeli I. In silico assessment of potential druggable pockets on the surface of α1-antitrypsin conformers. PLoS ONE. 2012;7(5):e36612.
Dasi Sangachini E, Hasannia S, Taghdir M, Pirooznia N, Khalili GK. Construction of an engineered alpha 1-antitrypsin with inhibitory activity based on theoretical studies. Electron J Biotechnol. 2012;15(2):8.
Gasymov OK, Glasgow BJ. ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochim Biophys Acta. 2007;1774(3):403–411.
Janciauskiene S, Wrenger S, Immenschuh S, et al. The multifaceted effects of Alpha1-antitrypsin on neutrophil functions. Front Pharmacol. 2018;9:341.
Pandey KC, De S, Mishra PK. Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol. 2017;8:512.
Liu X, Vanvarenberg K, Guy Wilfried Kouassi K, Mahri S, Vanbever R. Production and characterization of mono-PEGylated alpha-1 antitrypsin for augmentation therapy. Int J Pharm. 2022;612:121355.
Cantin AM, Woods DE, Cloutier D, Dufour EK, Leduc R. Polyethylene glycol conjugation at Cys232 prolongs the half-life of alpha1 proteinase inhibitor. Am J Respir Cell Mol Biol. 2002;27(6):659–665.
Chiu K, Agoubi LL, Lee I, Limpar MT, Lowe JW, Goh SL. Effects of polymer molecular weight on the size, activity, and stability of PEG-functionalized trypsin. Biomacromolecules. 2010;11(12):3688–3692.
Guichard M-J, Patil HP, Koussoroplis SJ, Wattiez R, Leal T, Vanbever R. Production and characterization of a PEGylated derivative of recombinant human deoxyribonuclease I for cystic fibrosis therapy. Int J Pharm. 2017;524(1–2):159–167.
Plesner B, Westh P, Nielsen AD. Biophysical characterisation of GlycoPEGylated recombinant human factor VIIa. Int J Pharm. 2011;406(1–2):62–68.
Kolarich D, Turecek PL, Weber A, et al. Biochemical, molecular characterization, and glycoproteomic analyses of alpha(1)-proteinase inhibitor products used for replacement therapy. Transfusion. 2006;46(11):1959–1977.
Luo S, Lu X, Liu C, Zhong J, Zhou L, Chen T. Site specific PEGylation of β-lactoglobulin at glutamine residues and its influence on conformation and antigenicity. Food Res Int. 2019;123:623–630.
Mero A, Grigoletto A, Maso K, Yoshioka H, Rosato A, Pasut G. Site-selective enzymatic chemistry for polymer conjugation to protein lysine residues: PEGylation of G-CSF at lysine-41. Polym Chem. 2016;7(42):6545–6553.
Wang J, Hu T, Liu Y, Zhang G, Ma G, Su Z. Kinetic and stoichiometric analysis of the modification process for N-terminal PEGylation of staphylokinase. Anal Biochem. 2011;412(1):114–116.
Suo X, Lu X, Hu T, Ma G, Su Z. A solid-phase adsorption method for PEGylation of human serum albumin and staphylokinase: Preparation, purification and biochemical characterization. Biotechnol Lett. 2009;31(8):1191–1196.
Zhu W, Li L, Deng M, et al. Oxidation-resistant and thermostable forms of alpha-1 antitrypsin from Escherichia coli inclusion bodies. FEBS Open Bio. 2018;8(10):1711–1721.
Tsutsui Y, Wintrode PL. Cooperative unfolding of a metastable serpin to a molten globule suggests a link between functional and folding energy landscapes. J Mol Biol. 2007;371(1):245–255.
Krishnan B, Gierasch LM. Dynamic local unfolding in the serpin α-1 antitrypsin provides a mechanism for loop insertion and polymerization. Nat Struct Mol Biol. 2011;18(2):222–226.
Knaupp AS, Levina V, Robertson AL, Pearce MC, Bottomley SP. Kinetic instability of the serpin Z alpha1-antitrypsin promotes aggregation. J Mol Biol. 2010;396(2):375–383.
Dobó J, Gettins PGW. alpha1-proteinase inhibitor forms initial non-covalent and final covalent complexes with elastase analogously to other serpin-proteinase pairs, suggesting a common mechanism of inhibition. J Biol Chem. 2004;279(10):9264–9269.
Tran ST, Shrake A. The folding of alpha-1-proteinase inhibitor: Kinetic vs equilibrium control. Arch Biochem Biophys. 2001;385(2):322–331.
Sorret LL, Monticello CR, DeWinter MA, Schwartz DK, Randolph TW. Steric repulsion forces contributed by PEGylation of interleukin-1 receptor antagonist reduce gelation and aggregation at the silicone oil–water interface. J Pharm Sci. 2019;108(1):162–172.
Elliott PR, Abrahams JP, Lomas DA. Wild-type alpha 1-antitrypsin is in the canonical inhibitory conformation. J Mol Biol. 1998;275(3):419–425.
Bottomley SP. The folding pathway of alpha1-antitrypsin: Avoiding the unavoidable. Proc Am Thorac Soc. 2010;7(6):404–407.
Tsutsui Y, Dela Cruz R, Wintrode PL. Folding mechanism of the metastable serpin α1-antitrypsin. Proc Natl Acad Sci U S A. 2012;109(12):4467–4472.
Kang U-B, Baek J-H, Ryu S-H, Kim J, Yu M-H, Lee C. Kinetic mechanism of protease inhibition by alpha1-antitrypsin. Biochem Biophys Res Commun. 2004;323(2):409–415.
Ali MF, Kaushik A, Kapil C, Gupta D, Jairajpuri MA. A hydrophobic patch surrounding Trp154 in human neuroserpin controls the helix F dynamics with implications in inhibition and aggregation. Sci Rep. 2017;7:42987.
Mallya M, Phillips RL, Saldanha SA, et al. Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem. 2007;50(22):5357–5363.
Kwon K-S, Yu M-H. Effect of glycosylation on the stability of α1-antitrypsin toward urea denaturation and thermal deactivation. Biochim Biophys Acta. 1997;1335(3):265–272.
Lomas DA, Evans DL, Stone SR, Chang WS, Carrell RW. Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. Biochemistry. 1993;32(2):500–508.
Haq I, Irving JA, Saleh AD, et al. Deficiency mutations of alpha-1 antitrypsin effects on folding, function, and polymerization. Am J Respir Cell Mol Biol. 2016;54(1):71–80.
Roque C, Sheung A, Rahman N, Ausar SF. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (fab'). Mol Pharm. 2015;12(2):562–575.
Rajan RS, Li T, Aras M, et al. Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study. Protein Sci. 2006;15(5):1063–1075.
Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G. Site-specific pegylation of G-CSF by reversible denaturation. Bioconjug Chem. 2007;18(6):1824–1830.
Persson C, Subramaniyam D, Stevens T, Janciauskiene S. Do native and polymeric alpha1-antitrypsin activate human neutrophils in vitro? Chest. 2006;129(6):1683–1692.
Lomas DA, Elliott PR, Chang WS, Wardell MR, Carrell RW. Preparation and characterization of latent alpha 1-antitrypsin. J Biol Chem. 1995;270(10):5282–5288.
Janciauskiene S, Dominaitiene R, Sternby NH, Piitulainen E, Eriksson S. Detection of circulating and endothelial cell polymers of Z and wild type alpha 1-antitrypsin by a monoclonal antibody. J Biol Chem. 2002;277(29):26540–26546.
Zhang C, Desai R, Perez-Luna V, Karuri N. PEGylation of lysine residues improves the proteolytic stability of fibronectin while retaining biological activity. Biotechnol J. 2014;9(8):1033–1043.
Zhang C, Hekmatfar S, Ramanathan A, Karuri NW. PEGylated human plasma fibronectin is proteolytically stable, supports cell adhesion, cell migration, focal adhesion assembly, and fibronectin fibrillogenesis. Biotechnol Prog. 2013;29(2):493–504.
Danial M, van Dulmen THH, Aleksandrowicz J, Pötgens AJG, Klok H-A. Site-specific PEGylation of HR2 peptides: Effects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation. Bioconjug Chem. 2012;23(8):1648–1660.
Chen Y, Snyder MR, Zhu Y, et al. Simultaneous phenotyping and quantification of α-1-antitrypsin by liquid chromatography–tandem mass spectrometry. Clin Chem. 2011;57(8):1161–1168.
Pace CN. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280.
Vandenameele J, Lejeune A, Di Paolo A, et al. Folding of class a beta-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways. Biochemistry. 2010;49(19):4264–4275.
El Hajjaji H, Dumoulin M, Matagne A, et al. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2. J Mol Biol. 2009;386(1):60–71.
Overall CM. A microtechnique for dialysis of small volume solutions with quantitative recoveries. Anal Biochem. 1987;165(1):208–214.
Lestienne P, Bieth JG. The inhibition of human leukocyte elastase by basic pancreatic trypsin inhibitor. Arch Biochem Biophys. 1978;190(1):358–360.