Adoptive cell therapy; BAT; BiTE; Bispecific T cell engager; Bispecific antibody; Bispecific antibody armed T cell; CAR T; Chimeric antigen receptor; Immunotherapy; Multiple myeloma; Stem cell transplantation; Receptors, Chimeric Antigen; Humans; Immunotherapy, Adoptive; Patient Selection; Multiple Myeloma/drug therapy; Receptors, Chimeric Antigen/therapeutic use; Molecular Biology; Hematology; Oncology; Cancer Research
Abstract :
[en] Multiple myeloma (MM) is a plasma cell malignancy that affects an increasing number of patients worldwide. Despite all the efforts to understand its pathogenesis and develop new treatment modalities, MM remains an incurable disease. Novel immunotherapies, such as CAR T cell therapy (CAR) and bispecific T cell engagers (BiTE), are intensively targeting different surface antigens, such as BMCA, SLAMF7 (CS1), GPRC5D, FCRH5 or CD38. However, stem cell transplantation is still indispensable in transplant-eligible patients. Studies suggest that the early use of immunotherapy may improve outcomes significantly. In this review, we summarize the currently available clinical literature on CAR and BiTE in MM. Furthermore, we will compare these two T cell-based immunotherapies and discuss potential therapeutic approaches to promote development of new clinical trials, using T cell-based immunotherapies, even as bridging therapies to a transplant.
Disciplines :
Hematology Immunology & infectious disease Laboratory medicine & medical technology
Author, co-author :
Kegyes, David ✱; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Constantinescu, Catalin ✱; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
Vrancken, Louise ; Centre Hospitalier Universitaire de Liège - CHU > > Frais communs médecine - Pool assistants
Rasche, Leo; Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
Grégoire, Céline ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
Tigu, Bogdan; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Gulei, Diana; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
Dima, Delia; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
Tanase, Alina; Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
Einsele, Hermann; Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
Ciurea, Stefan; Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, USA
Tomuleasa, Ciprian; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania. ciprian.tomuleasa@umfcluj.ro ; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania. ciprian.tomuleasa@umfcluj.ro ; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania. ciprian.tomuleasa@umfcluj.ro
Caers, Jo ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
The laboratory of Hematology (University of Liège) is supported by the Foundation Against Cancer, the CHU de Liège, the Fonds National de la Recherche Scientifique (F.N.R.S., Belgium), The Foundation Léon Frédéricq and the Fonds spéciaux de la Recherche (University of Liege). This work is granted by project PDI-PFE-CDI 2021, entitled Increasing the Performance of Scientific Research, Supporting Excellence in Medical Research, and Innovation, PROGRES, no. 40PFE/30.12.2021.David Kegyes and Catalin Constantinescu contributed equally to the current manuscript and are both considered first author. David Kegyes is funded by an internal grant of the Iuliu Hatieganu University – School of Medicine. This manuscript is also the result of a grant PN-III-CEI-BIM-PBE-2020-0016 within PNCDI I—collaboration between Romania and Belgium (Wallonia), contract number 13-BM/2020. Ciprian Tomuleasa is also supported by 3 grants awarded by the Romanian National Ministry of Research, Innovation and Digitalization: CCCDI-UEFISCDI, Project No. PN-III-P4-ID-PCCF-2016–0112 within PNCDI III, for Young Research Teams 2020–2022 (Grant No. PN-III-P1-1.1-TE-2019-0271); PN-III-P4-ID-PCE-2020-1118 within PNCDI IV, Projects for Exploratory Medicine; Projects for Exploratory Medicine—PCE 225/2021; Diana Gulei is supported by 2 grants: one awarded by the Romanian National Ministry of Research, Innovation and Digitalization: Postdoctoral Research Project PN-III-P1-1.1-PD-2019-0805, No. PD122/2020; as well as an international collaborative grant of the European Economic Space between Romania and Iceland 2021–2023: “Cooperation strategy for knowledge transfer, internationalization and curricula innovation in the field of research education at the 3rd level of study –AURORA.” The laboratory of Hematology (University of Liège) was supported by the Foundation Against Cancer, the CHU de Liège, the Fonds National de la Recherche Scientifique (F.N.R.S., Belgium), The Foundation Léon Frédéricq and the Fonds spéciaux de la Recherche (University of Liege). The authors thank Carole Kay for proofreading and correcting our manuscript.
Padala SA, Barsouk A, Barsouk A, Rawla P, Vakiti A, Kolhe R, et al. Epidemiology, staging, and management of multiple myeloma. Med Sci. 2021;9(1):3.
Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3:1–20. 10.1038/nrdp.2017.46. DOI: 10.1038/nrdp.2017.46
Casey M, Nakamura K. The cancer-immunity cycle in multiple myeloma. Immuno Targets Ther. 2021;10:247–60.
Dimopoulos MA, Moreau P, Terpos E, Mateos M, Zweegman S, Cook G, et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2021;32(3):309–22. 10.1016/j.annonc.2020.11.014. DOI: 10.1016/j.annonc.2020.11.014
Ramasamy K, Gay F, Weisel K, Zweegman S, Mateos MV, Richardson P. Improving outcomes for patients with relapsed multiple myeloma: challenges and considerations of current and emerging treatment options. Blood Rev. 2021;49(February):100808. 10.1016/j.blre.2021.100808. DOI: 10.1016/j.blre.2021.100808
Cavo M, Gay F, Beksac M, Pantani L, Petrucci MT, Dimopoulos MA, et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): a mult. Lancet Haematol. 2020;7(6):e456-68. 10.1016/S2352-3026(20)30099-5. DOI: 10.1016/S2352-3026(20)30099-5
Davis LN, Sherbenou DW. Emerging therapeutic strategies to overcome drug resistance in multiple myeloma. Cancers (Basel). 2021. 10.3390/cancers13071686. DOI: 10.3390/cancers13071686
Uckun FM. Overcoming the immunosuppressive tumor microenvironment in multiple myeloma. Cancers (Basel). 2021. 10.3390/cancers13092018. DOI: 10.3390/cancers13092018
Du J, Zhuang J. Major advances in the treatment of multiple myeloma in American Society of Hematology annual meeting 2020. Chronic Dis Transl Med. 2021;7(4):220–6. 10.1016/j.cdtm.2021.08.003. DOI: 10.1016/j.cdtm.2021.08.003
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci. 1989;86(December):10024–8.
Mo F, Mamonkin M. Generation of chimeric antigen receptor t cells using gammaretroviral vectors. Methods Mol Biol. 2020;2086:119–30.
Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7.
Bishop DC, Caproni L, Gowrishankar K, Legiewicz M, Karbowniczek K, Tite J, et al. CAR T cell generation by piggybac transposition from linear doggybone DNA vectors requires transposon DNA-flanking regions. Mol Ther Methods Clin Dev. 2020;17(June):359–68. 10.1016/j.omtm.2019.12.020. DOI: 10.1016/j.omtm.2019.12.020
Chicaybam L, Abdo L, Bonamino MH. Generation of CAR+ T lymphocytes using the sleeping beauty transposon system. Methods Mol Biol. 2020;2086:131–7.
Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun. 2020. 10.1038/s41467-020-19486-2. DOI: 10.1038/s41467-020-19486-2
Lin L, Cho SF, Xing L, Wen K, Li Y, Yu T, et al. Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia. 2021;35(3):752–63. 10.1038/s41375-020-0951-5. DOI: 10.1038/s41375-020-0951-5
Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, et al. Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-Cell response. Hum Gene Ther. 2019;30(2):168–78.
Yang EY, Shah K. Nanobodies: next generation of cancer diagnostics and therapeutics. Front Oncol. 2020. 10.3389/fonc.2020.01182. DOI: 10.3389/fonc.2020.01182
Fujiwara K, Tsunei A, Kusabuka H, Ogaki E, Tachibana M, Okada N. Hinge and transmembrane domains of chimeric antigen receptor regulate receptor expression and signaling threshold. Cells. 2020;9(5):1182.
Stornaiuolo A, Valentinis B, Sirini C, Scavullo C, Asperti C, Zhou D, et al. Characterization and functional analysis of CD44v6.CAR T cells endowed with a new low-affinity nerve growth factor receptor-based spacer. Hum Gene Ther. 2021;32(13–14):744–60. 10.1089/hum.2020.216. DOI: 10.1089/hum.2020.216
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, et al. CAR-T design: elements and their synergistic function. EBioMedicine. 2020. 10.1016/j.ebiom.2020.102931. DOI: 10.1016/j.ebiom.2020.102931
Tomuleasa C, Fuji S, Berce C, Onaciu A, Chira S, Petrushev B, et al. Chimeric antigen receptor T-cells for the treatment of B-cell acute lymphoblastic leukemia. Front Immunol. 2018;9(FEB):1–14.
Tat T, Li H, Constantinescu CS, Onaciu A, Chira S, Osan C, et al. Genetically enhanced T lymphocytes and the intensive care unit. Oncotarget. 2018;9(23):16557–72.
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021. 10.1038/s41408-021-00459-7. DOI: 10.1038/s41408-021-00459-7
Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncol. 2016;3(February):16014.
Weinkove R, George P, Dasyam N, McLellan AD. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol. 2019;8(5):1–14.
Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, et al. Recent advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):1–19.
Duan D, Wang K, Wei C, Feng D, Liu Y, He Q, et al. The BCMA-Targeted Fourth-Generation CAR-T Cells Secreting IL-7 and CCL19 for therapy of refractory/recurrent multiple myeloma. Front Immunol. 2021;12(March):1–11.
Cells CART, Benmebarek M reda, Karches CH, Cadilha BL, Lesch S, Endres S, et al. Killing Mechanisms of Chimeric Antigen Receptor; 2019.
Lejeune M, Köse MC, Duray E, Einsele H, Beguin Y, Caers J. Bispecific, T-cell-recruiting antibodies in B-cell malignancies. Front Immunol. 2020. 10.3389/fimmu.2020.00762. DOI: 10.3389/fimmu.2020.00762
Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single- chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci U S A. 1995;92(15):7021–5.
Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):1–18. 10.1186/s13045-021-01084-4. DOI: 10.1186/s13045-021-01084-4
Santich BH, Park JA, Tran H, Guo HF, Huse M, Cheung NKV. Interdomain spacing and spatial configuration drive the potency of IgG-[L]-scFv T cell bispecific antibodies. Sci Transl Med. 2020;12(534):eaax1315. 10.1126/scitranslmed.aax1315. DOI: 10.1126/scitranslmed.aax1315
Bu DX, Singh R, Choi EE, Ruella M, Cruz SN, Mansfield KG, et al. Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget. 2018;9(40):25764–80.
Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19(8):2048–60.
Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T cells genetically modified to express an anti–B-Cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36(22):2267–80.
Zhang L, Shen X, Yu W, Li J, Zhang J, Zhang R, et al. Comprehensive meta-analysis of anti-BCMA chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Ann Med. 2021;53(1):1547–59. 10.1080/07853890.2021.1970218. DOI: 10.1080/07853890.2021.1970218
Lin L, Cho SF, Xing L, Wen K, Li Y, Yu T, et al. Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia. 2021;35(3):752–63.
Costello C, Derman BA, Kocoglu MH, Deol A, Ali AA, Gregory T, et al. Clinical trials of BCMA-targeted CAR-T cells utilizing a novel non-viral transposon system. Blood. 2021;138(Supplement 1):3858–3858.
Costello CL, Cohen AD, Patel KK, Ali SS, Berdeja JG, Shah N, et al. Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (mm) (prime) with novel therapeutic strategies. Blood. 2020;136(Supplement 1):29–30. 10.1182/blood-2020-142695. DOI: 10.1182/blood-2020-142695
Costello CL, Gregory TK, Ali SA, Berdeja JG, Patel KK, Shah ND, et al. Phase 2 study of the response and safety of P-Bcma-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME). Blood. 2019;134(Supplement_1):3184. 10.1182/blood-2019-129562. DOI: 10.1182/blood-2019-129562
Ivics Z. Potent CAR-T cells engineered with sleeping beauty transposon vectors display a central memory phenotype. Gene Ther. 2021;28(1–2):3–5. 10.1038/s41434-020-0138-8. DOI: 10.1038/s41434-020-0138-8
Green DJ, Pont M, Sather BD, Cowan AJ, Turtle CJ, Till BG, et al. Fully human Bcma targeted chimeric antigen receptor t cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood. 2018;132(Supplement 1):1011. 10.1182/blood-2018-99-117729. DOI: 10.1182/blood-2018-99-117729
Rodríguez-Lobato LG, Ganzetti M, Fernández de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-cells in multiple myeloma: state of the art and future directions. Front Oncol. 2020;10(July):1–21.
Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J Clin Investig. 2019;129(6):2210–21.
Green DJ, Pont M, Cowan AJ, Cole GO, Sather BD, Nagengast AM, et al. Response to Bcma CAR-T cells correlates with pretreatment target antigen density and is improved by small molecule inhibition of gamma secretase. Blood. 2019;134(Supplement_1):1856. 10.1182/blood-2019-129582. DOI: 10.1182/blood-2019-129582
van de Donk NWCJ, Themeli M, Usmani SZ. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Cancer Discov. 2021;2(4):302–18.
Seipel K, Porret N, Wiedemann G, Jeker B, Bacher VU, Pabst T. sBCMA plasma level dynamics and anti-BCMA CAR-T-Cell treatment in relapsed multiple myeloma. Curr Issues Mol Biol. 2022;44(4):1463–71.
Jiang Hua, Dong Baoxia, Gao Li, Liu Li, Ge Jian, He Aili, et al. Long-term follow-up results of a multicenter first-in-human study of the dual BCMA/CD19 Targeted FasT CAR-T GC012F for patients with relapsed/refractory multiple myeloma. J Clin. 2021. 10.1200/JCO.2021.39.15_suppl.8014. DOI: 10.1200/JCO.2021.39.15_suppl.8014
Zhang H, Gao L, Liu L, Wang J, Wang S, Gao L, et al. A Bcma and CD19 bispecific CAR-T for relapsed and refractory multiple myeloma. Blood. 2019;134(Supplement_1):3147. 10.1182/blood-2019-131056. DOI: 10.1182/blood-2019-131056
Wudhikarn K, Mailankody S, Smith EL. Future of CAR T cells in multiple myeloma. Hematology. 2020;2020(1):272–9. 10.1182/hematology.2020000111. DOI: 10.1182/hematology.2020000111
van der Schans JJ, van de Donk NWCJ, Mutis T. Dual targeting to overcome current challenges in multiple myeloma car T-cell treatment. Front Oncol. 2020;10(August):1–8.
Laurent SA, Hoffmann FS, Kuhn PH, Cheng Q, Chu Y, Schmidt-Supprian M, et al. γ-secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun. 2015. 10.1038/ncomms8333. DOI: 10.1038/ncomms8333
Pont MJ, Hill T, Cole GO, Abbott JJ, Kelliher J, Salter AI, et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood. 2019;134:1585–97.
Lin Q, Zhao J, Song Y, Liu D. Recent updates on CAR T clinical trials for multiple myeloma. Mol Cancer. 2019;18(1):1–11.
Sommer C, Boldajipour B, Kuo TC, Bentley T, Sutton J, Chen A, et al. Preclinical evaluation of allogeneic CAR T cells targeting BCMA for the treatment of multiple myeloma. Mol Ther. 2019;27(6):1126–38. 10.1016/j.ymthe.2019.04.001. DOI: 10.1016/j.ymthe.2019.04.001
Mikkilineni L, Manasanch EE, Lam N, Vanasse D, Brudno JN, Maric I, et al. T Cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor with a fully-human heavy-chain-only antigen recognition domain induce remissions in patients with relapsed multiple myeloma. Blood. 2019;134(Supplement_1):3230. 10.1182/blood-2019-129088. DOI: 10.1182/blood-2019-129088
Bianchi ME, Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front Immunol. 2020;11(August):1–8.
Wu X, Shi B, Zhang J, Shi Z, Di S, Fan M, et al. A fusion receptor as a safety switch, detection, and purification biomarker for adoptive transferred T cells. Mol Ther. 2017;25(10):2270–9. 10.1016/j.ymthe.2017.06.026. DOI: 10.1016/j.ymthe.2017.06.026
Munshi NC, Anderson LDJ, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–16.
Stauffer A, Ray C, Hall M. A flexible multiplatform bioanalytical strategy for measurement of total circulating shed target receptors: application to soluble b cell maturation antigen levels in the presence of a bispecific antibody drug. Assay Drug Dev Technol. 2021;19(1):17–26.
Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7(11):1187–99.
Lee L, Draper B, Chaplin N, Philip B, Chin M, Galas-Filipowicz D, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood. 2018;131(7):746–58. 10.1182/blood-2017-05-781351. DOI: 10.1182/blood-2017-05-781351
Schmidts A, Ormhøj M, Choi BD, Taylor AO, Bouffard AA, Scarfò I, et al. Rational design of a trimeric April-based CAR-binding domain enables efficient targeting of multiple myeloma. Blood Adv. 2019;3(21):3248–60.
Drent E, Groen RWJ, Noort WA, Themeli M, van Bueren JJL, Parren PWHI, et al. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica. 2016;101(5):616–25.
Zuch de Zafra CL, Fajardo F, Zhong W, Bernett MJ, Muchhal US, Moore GL, et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25(13):3921–33.
Richter JR, Landgren CO, Kauh JS, Back J, Salhi Y, Reddy V, et al. Phase 1, multicenter, open-label study of single-agent bispecific antibody t-cell engager GBR 1342 in relapsed/refractory multiple myeloma. J Clin Oncol. 2018;36(15_suupl):TPS3132–5.
Figure OS. Bi38–3 is a novel CD38 / CD3 bispecific T-cell engager with low toxicity for the treatment of multiple myeloma. Haematologica. 2021;106:1193–7.
Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y, Rice AG, van Abbema A, Wong M, Liu G, Zhan F, Dillon M, Chen S. Su and MBW CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Physiol Behav. 2016;176(1):100–6.
Kikuchi J, Hori M, Iha H, Toyama-Sorimachi N, Hagiwara S, Kuroda Y, et al. Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7. Leukemia. 2020;34(1):180–95. 10.1038/s41375-019-0525-6. DOI: 10.1038/s41375-019-0525-6
Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 2021;28(9):513–27. 10.1038/s41434-021-00246-w. DOI: 10.1038/s41434-021-00246-w
Smith EL, Harrington K, Staehr M, Masakayan R, Jones J, Long TJ, et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med. 2019;11(485).
Atamaniuk J, Gleiss A, Porpaczy E, Kainz B, Grunt TW, Raderer M, et al. Overexpression of G protein-coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur J Clin Invest. 2012;42(9):953–60.
Berdeja JG, Krishnan AY, Oriol A, van de Donk NWCJ, Rodríguez-Otero P, Askari E, et al. Updated results of a phase 1, first-in-human study of talquetamab, a G protein-coupled receptor family C group 5 member D (GPRC5D) × CD3 bispecific antibody, in relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2021;39(15_suppl):8008. 10.1200/JCO.2021.39.15_suppl.8008. DOI: 10.1200/JCO.2021.39.15_suppl.8008
Elkins K, Zheng B, Go MA, Slaga D, Du C, Scales SJ, et al. FcRL5 as a target of antibody-drug conjugates for the treatment of multiple myeloma. Mol Cancer Ther. 2012;11(10):2222–32.
O’Connell FP, Pinkus JL, Pinkus GS. CD138 (Syndecan-1), a plasma cell marker: immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol. 2004;121(2):254–63.
Guo B, Chen M, Han Q, Hui F, Dai H, Zhang W, et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J Cell Immunother. 2016;2(1):28–35. 10.1016/j.jocit.2014.11.001. DOI: 10.1016/j.jocit.2014.11.001
Ishikawa H, Tsuyama N, Mahmoud MS, Fujii R, Abroun S, Liu S, et al. CD19 expression and growth inhibition of tumours in human multiple myeloma. Leuk Lymphoma. 2002;43(3):613–6.
Kellner J, Wallace C, Liu B, Li Z. Definition of a multiple myeloma progenitor population in mice driven by enforced expression of XBP1s. JCI Insight. 2019;4(7):1–15.
Garfall AL, Stadtmauer EA, Hwang WT, Lacey SF, Melenhorst JJ, Krevvata M, et al. Anti-CD19 CAR t cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight. 2018;3(8):1–14.
Rodríguez-Otero P, Prósper F, Alfonso A, Paiva B, San Miguel JF. Car t-cells in multiple myeloma are ready for prime time. J Clin Med. 2020;9(11):1–16.
Sidana S, Shah N. CAR T-cell therapy: Is it prime time in myeloma? Hematol (United States). 2019;2019(1):260–5.
Wensveen FM, Jelenčić V, Polić B. NKG2D: a master regulator of immune cell responsiveness. Front Immunol. 2018. 10.3389/fimmu.2018.00441. DOI: 10.3389/fimmu.2018.00441
Nikiforow S, Werner L, Murad J, Jacobs M, Johnston L, Patches S, et al. Safety data from a first-in-human phase 1 Trial of NKG2D chimeric antigen receptor-T Cells in AML/MDS and multiple myeloma. Blood. 2016;128(22):4052. 10.1182/blood.V128.22.4052.4052. DOI: 10.1182/blood.V128.22.4052.4052
Sallman DA, Brayer JB, Poire X, Havelange V, Awada A, Lewalle P, et al. Results from the completed dose-escalation of the hematological arm of the phase i think study evaluating multiple infusions of NKG2D-based CAR T-cells as standalone therapy in relapse/refractory acute myeloid leukemia and myelodysplastic syndrome patient. Blood. 2019;134(Supplement_1):3826. 10.1182/blood-2019-128020. DOI: 10.1182/blood-2019-128020
van Camp BB, Durie BGM, Spier C, de Waele M, van Riet I, Vela E, et al. Plasma cells in multiple myeloma express a natural killer cell-associated antigen CD56 (NKH-1; Leu-19). BLOOD. 1990;76(2):377–82. 10.1182/blood.V76.2.377.377. DOI: 10.1182/blood.V76.2.377.377
Neri P, Ren L, Azab AK, Brentnall M, Gratton K, Klimowicz AC, et al. Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood. 2011;117(23):6202–13.
Hosen N, Matsunaga Y, Hasegawa K, Matsuno H, Nakamura Y, Makita M, et al. The activated conformation of integrin β7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat Med. 2017;23(12):1436–43.
Liebisch P, Eppinger S, Schöpflin C, Stehle G, Munzert G, Döhner H, et al. CD44v6, a target for novel antibody treatment approaches, is frequently expressed in multiple myeloma and associated with deletion of chromosome arm 13q. Haematologica. 2005;90(4):489–93.
Ghafouri-Fard S, Seifi-Alan M, Shamsi R, Esfandiary A. Immunotherapy in multiple myeloma using cancer-testis antigens. Int J Cancer Manag. 2015. 10.17795/ijcp-3755. DOI: 10.17795/ijcp-3755
Ghafouri-Fard S. Expression of cancer-testis antigens in stem cells: is it a potential drawback or an advantage in cancer immunotherapy. Asian Pac J Cancer Prev. 2015;16(7):3079–81.
Zhang W, Qu X, Chen B, Snyder M, Li B, Tang Y, et al. Engineered CAR T Cells targeting the cancer-associated tn-glycoform of the membrane mucin MUC1 control. Immunity. 2016;44(6):1444.
Gutierrez R, Shah PD, Hamid O, Garfall AL, Posey A, Bishop MR, et al. Phase I experience with first in class TnMUC1 targeted chimeric antigen receptor T-cells in patients with advanced TnMUC1 positive solid tumors. J Clin Oncol. 2021;39(15_suppl):e14513–e14513. 10.1200/JCO.2021.39.15_suppl.e14513. DOI: 10.1200/JCO.2021.39.15_suppl.e14513
Tamura H, Ishibashi M, Sunakawa-Kii M, Inokuchi K. PD-L1-PD-1 pathway in the pathophysiology of multiple myeloma. Cancers (Basel). 2020;12(4):1–14.
Borgert R,BCOP P. Improving outcomes and mitigating costs associated with CAR T-Cell therapy. Supplements and Featured Publications. 2021;27(13). Available from: https://cdn.sanity.io/files/0vv8moc6/ajmc/cf06f4909c69be1f7818ab8337ccd598619c1966.pdf
Subklewe M. BiTEs better than CAR T cells. Blood Adv. 2021;5(2):607–12. 10.1182/bloodadvances.2020001792. DOI: 10.1182/bloodadvances.2020001792
Thielen FW, van Dongen-Leunis A, Arons AMM, Ladestein JR, Hoogerbrugge PM, Uyl-deGroot CA. Cost-effectiveness of Anti-CD19 chimeric antigen receptor T-Cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–15.
Maschan M, Caimi PF, Reese-Koc J, Sanchez GP, Sharma AA, Molostova O, et al. Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat Commun. 2021;12(1):1–14.
Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25(9):1341–55. 10.1038/s41591-019-0564-6. DOI: 10.1038/s41591-019-0564-6
Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, et al. Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol. 2000;165(11):6047–55.
Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature. 2022;602(7897):503–9.
Brandt LJB, Barnkob MB, Michaels YS, Heiselberg J, Barington T. Emerging approaches for regulation and control of CAR T Cells: a mini review. Front Immunol. 2020;11(February):1–9.
Lum LG, Thakur A, Elhakiem A, Alameer L, Dinning E, Huang M. Anti-CS1 × Anti-CD3 bispecific antibody (BiAb)-armed anti-CD3 activated T cells (CS1-BATs) kill CS1+ myeloma cells and release type-1 cytokines. Front Oncol. 2020;10(May):1–11.
Amini L, Silbert SK, Maude SL, Nastoupil LJ, Ramos CA, Brentjens RJ, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol. 2022. 10.1038/s41571-022-00607-3. DOI: 10.1038/s41571-022-00607-3
Martin T, Usmani SZ, Berdeja JG, Jakubowiak A, Agha M, Cohen AD, et al. Updated results from CARTITUDE-1: Phase 1b/2Study of ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T cell therapy, in patients with relapsed/refractory multiple myeloma. Blood. 2021;138:549.
Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59.
Qian Y, Qian Z, Zhao X, Pan W, Wei X, Meng H, et al. Successful treatment of relapsed/refractory extramedullary multiple myeloma with anti-bcma CAR-t cell therapy followed by haploidentical hematopoietic stem cell transplantation: a case report and a review of the contemporary literature. Front Med. 2021. 10.3389/fmed.2021.649824. DOI: 10.3389/fmed.2021.649824
Lin Y, Raje NS, Berdeja JG, Siegel DS, Jagannath S, Madduri D, et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: updated results from phase 1 CRB-401 study. Blood. 2020;136(Supplement 1):26–7. 10.1182/blood-2020-134324. DOI: 10.1182/blood-2020-134324
Usmani SZ, Berdeja JG, Truppel-Hartmann A, Fei Y, Wortman-Vayn H, Shelat S, et al. KarMMa-4: Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T-cell therapy in high-risk newly diagnosed multiple myeloma. J Clin Oncol. 2021;39(15_suppl):TPS8053–6. 10.1200/JCO.2021.39.15_suppl.TPS8053. DOI: 10.1200/JCO.2021.39.15_suppl.TPS8053
Raje NS, Shah N, Jagannath S, Kaufman JL, Siegel DS, Munshi NC, et al. Updated clinical and correlative results from the phase I CRB-402 study of the BCMA-targeted CAR T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma. Blood. 2021;138(Supplement 1):548–548.
Kumar SK, Baz RC, Orlowski RZ, Anderson LD, Ma H, Shrewsbury A, et al. Results from lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T Cells (CT053) in patients with relapsed and/or refractory multiple myeloma. Blood. 2020;136(Supplement 1):28–9. 10.1182/blood-2020-139802. DOI: 10.1182/blood-2020-139802
Jie J, Hao S, Jiang S, Li Z, Yang M, Zhang W, et al. Phase 1 trial of the safety and efficacy of fully human anti-Bcma CAR T cells in relapsed/refractory multiple myeloma. Blood. 2019;134(Supplement_1):4435. 10.1182/blood-2019-126104. DOI: 10.1182/blood-2019-126104
An G, Sui W, Wang T, Qu X, Zhang X, Yang J, et al. An anti-Bcma CAR T-cell therapy (C-CAR088) shows promising safety and efficacy profile in relapsed or refractory multiple myeloma. Blood. 2020;136(Supplement 1):29–30. 10.1182/blood-2020-138734. DOI: 10.1182/blood-2020-138734
Han L, Gao Q, Zhou K, Zhou J, Yin QS, Fang B, et al. The clinical study of anti-BCMA CAR-T with single-domain antibody as antigen binding domain. J Clin Oncol. 2021;39(15_suppl):8025. 10.1200/JCO.2021.39.15_suppl.8025. DOI: 10.1200/JCO.2021.39.15_suppl.8025
Liu Y, Chen Z, Wei R, Shi L, He F, Shi Z, et al. Remission observed from a phase 1 clinical study of CAR-T therapy with safety switch targeting BCMA for patients with relapsed/refractory multiple myeloma. J Clin Oncol. 2018;36(15l):8020. 10.1200/JCO.2018.36.15_suppl.8020. DOI: 10.1200/JCO.2018.36.15_suppl.8020
Sperling AS, Nikiforow S, Nadeem O, Mo CC, Laubach JP, Anderson KC, et al. Phase I study of PHE885, a fully human BCMA-directed CAR-T cell therapy for relapsed/refractory multiple myeloma manufactured in <2 days using the T-charge TM platform. Blood. 2021;138(Supplement 1):3864–3864.
Mailankody S, Ghosh A, Staehr M, Purdon TJ, Roshal M, Halton E, et al. Clinical responses and pharmacokinetics of MCARH171, a human-derived Bcma targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a phase I clinical trial. Blood. 2018;132(Supplement 1):959. 10.1182/blood-2018-99-119717. DOI: 10.1182/blood-2018-99-119717
Jiang H, Dong B, Gao L, Liu L, Ge J, He A, et al. Long-term follow-up results of a multicenter first-in-human study of the dual BCMA/CD19 Targeted FasT CAR-T GC012F for patients with relapsed/refractory multiple myeloma. J Clin Oncol. 2021;39(15\_suppl):8014. 10.1200/JCO.2021.39.15_suppl.8014. DOI: 10.1200/JCO.2021.39.15_suppl.8014
Popat R, Zweegman S, Cavet J, Yong K, Lee L, Faulkner J, et al. Phase 1 first-in-human study of AUTO2, the first chimeric antigen receptor (CAR) T cell targeting APRIL for Patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2019;134(Supplement_1):3112. 10.1182/blood-2019-126689. DOI: 10.1182/blood-2019-126689
Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;11(1):1–8.
Mailankody S, Jakubowiak AJ, Htut M, Costa LJ, Lee K, Ganguly S, et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011). J Clin Oncol. 2020;38(15_suppl):8504. 10.1200/JCO.2020.38.15_suppl.8504. DOI: 10.1200/JCO.2020.38.15_suppl.8504
Kumar SK, Baz RC, Orlowski RZ, Anderson LD Jr, Ma H, Shrewsbury A, et al. Results from lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in patients with relapsed and/or refractory multiple myeloma. Blood. 2020;136(Supplement 1):28–9. 10.1182/blood-2020-139802. DOI: 10.1182/blood-2020-139802
Oliver-Caldes A, Jiménez R, Español-Rego M, Cibeira MT, Ortiz-Maldonado V, Quintana LF, et al. First report of CART treatment in AL amyloidosis and relapsed/refractory multiple myeloma. J Immunother Cancer. 2021;9(12):1–5.
Ma F, Li J, Ren J, Zhang X, Wang F, Guo X, et al. Preliminary results of phase I/II study of SENL-B19 chimeric antigen receptor T cell therapy in pediatric and adult patients with relapsed/refractory acute lymphoblastic leukemia (r/r-ALL). Ann Oncol. 2018;29(October):viii401-2.
Zhang Y, Zhang C, Zhou J, Zhang J, Chen X, Chen J, et al. Case report: reversible neurotoxicity and a clinical response induced by BCMA-directed chimeric antigen receptor T Cells against multiple myeloma with central nervous system involvement. Front Immunol. 2021;12(February):1–6.
Jagannath S, Lin Y, Goldschmidt H, Reece D, Nooka A, Senin A, et al. KarMMa-RW: comparison of idecabtagene vicleucel with real-world outcomes in relapsed and refractory multiple myeloma. Blood Cancer J. 2021;11(6):1–9. 10.1038/s41408-021-00507-2. DOI: 10.1038/s41408-021-00507-2
Agha ME, Cohen AD, Madduri D, Cohen YC, Delforge M, Hillengass J, et al. CARTITUDE-2: Efficacy and safety of ciltacabtagene autoleucel (cilta-cel), a BCMA-directed CAR T-cell therapy, in patients with progressive multiple myeloma (MM) after one to three prior lines of therapy. J Clin Oncol. 2021;39(15l):8013. 10.1200/JCO.2021.39.15_suppl.8013. DOI: 10.1200/JCO.2021.39.15_suppl.8013
Delforge M, Baz RC, Cavo M, Callander NS, Ghobadi A, Rodriguez-Otero P, et al. KarMMa-3: a phase 3 study of idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy vs standard regimens in relapsed and refractory multiple myeloma. Blood. 2020;136(Supplement 1):24–5.
Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C, et al. Anti–B-cell maturation antigen bite molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol. 2020;38(8):775–83.
Bahlis NJ, Raje NS, Costello C, Dholaria BR, Solh MM, Levy MY, et al. Efficacy and safety of elranatamab (PF-06863135), a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MM). J Clin Oncol. 2021;39(15_suppl):8006. 10.1200/JCO.2021.39.15_suppl.8006. DOI: 10.1200/JCO.2021.39.15_suppl.8006
Garfall AL, Usmani SZ, Mateos MV, Nahi H, van de Donk NWCJ, San-Miguel JF, et al. Updated phase 1 results of teclistamab, a B-Cell maturation antigen (BCMA) x CD3 bispecific antibody, in relapsed and/or refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):27. 10.1182/blood-2020-138831. DOI: 10.1182/blood-2020-138831
Rodriguez-Otero P, Dholaria B, Askari E, Reece DE, van de Donk NWCJ, Chari A, et al. Subcutaneous teclistamab in combination with daratumumab for the treatment of patients with relapsed/refractory multiple myeloma: results from a phase 1b multicohort study. Blood. 2021;138(Supplement 1):1647. 10.1182/blood-2021-148723. DOI: 10.1182/blood-2021-148723
Costa LJ, Wong SW, Bermúdez A, de la Rubia J, Mateos MV, Ocio EM, et al. First clinical study of the B-cell maturation antigen (BCMA) 2+1 T cell engager (TCE) CC-93269 in patients (Pts) with relapsed/refractory multiple myeloma (RRMM): interim results of a phase 1 multicenter trial. Blood. 2019;134(Supplement_1):143. 10.1182/blood-2019-122895. DOI: 10.1182/blood-2019-122895
Rodriguez C, D’Souza A, Shah N, Voorhees PM, Buelow B, Vij R, et al. Initial Results of a phase I study of TNB-383B, a BCMA x CD3 bispecific T-cell redirecting antibody relapsed/refractory multiple myeloma. Blood. 2020;136(Supplement 1):43–4. 10.1182/blood-2020-139893. DOI: 10.1182/blood-2020-139893
Harrison SJ, Minnema MC, Lee HC, Spencer A, Kapoor P, Madduri D, et al. A Phase 1 first in human (FIH) study of AMG 701, an anti-B-cell maturation antigen (BCMA) half-life extended (HLE) BiTE® (bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). Blood. 2020;136(Supplement 1):28–9. 10.1182/blood-2020-134063. DOI: 10.1182/blood-2020-134063
Madduri D, Rosko A, Brayer J, Zonder J, Bensinger WI, Li J, et al. REGN5458, a BCMA x CD3 bispecific monoclonal antibody, induces deep and durable responses in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):41–2. 10.1182/blood-2020-139192. DOI: 10.1182/blood-2020-139192
Moreau P, Usmani SZ, Garfall AL, van de Donk NWCJ, Nahi H, San-Miguel J, et al. Updated results from MajesTec-1: phase 1/2 study of teclistamab, a B-cell maturation antigen x cd3 bispecific antibody relapsed/refractory multiple myeloma. Blood. 2021;138(Supplement 1):896–896.
Cohen AD, Harrison SJ, Krishnan A, Fonseca R, Forsberg PA, Spencer A, et al. Initial clinical activity and safety of BFCR4350A, a FcRH5/CD3 T-cell-engaging bispecific antibody relapsed/refractory multiple myeloma. Blood. 2020;136(Supplement 1):42–3. 10.1182/blood-2020-136985. DOI: 10.1182/blood-2020-136985
Constantinescu C, Pasca S, Tat T, Teodorescu P, Vlad C, Iluta S, Dima D, Tomescu D, Scarlatescu E, Tanase A, Sigurjonsson OE, Colita A, Einsele H, Tomuleasa C. Continuous renal replacement therapy in cytokine release syndrome following immunotherapy or cellular therapies? J Immunother Cancer. 2020;8(1):e000742. 10.1136/jitc-2020-000742. DOI: 10.1136/jitc-2020-000742