Electrostriction, ferroelectrics, density functional theory calculations
Abstract :
[en] We investigate the electrostrictive response across a ferroelectric phase transition from first-principles calcu- lations and show that M, the field-induced electrostrictive tensor, controlling the amplitude of the electric-field induced strain, can be made arbitrarily large through strain engineering. We take as a case study the epitaxial strain-induced transition from para- to ferroelectricity of KTaO3 . We show that the magnitude of the field-induced electrostriction diverges with the permittivity at the transition, hence exhibiting giant responses through a calcu- lation of both the M and Q electrostrictive tensors. We explain the origin of this giant electrostrictive response in KTaO3 using a microscopic decomposition of the electrostriction coefficients, and use this understanding to propose design rules for the development of future giant electrostrictors for electromechanical applications. Finally, we introduce a further means to calculate electrostriction, specific to ferroelectrics, and not yet utilized in the literature.
Disciplines :
Physics
Author, co-author :
Tanner, Daniel ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Bousquet, Eric ; Université de Liège - ULiège > Département de physique ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Language :
English
Title :
Strain-engineered divergent electrostriction in KTaO3
Publication date :
15 August 2022
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society, College Park, United States - Maryland
Volume :
106
Pages :
L060102
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
R. Korobko, A. Patlolla, A. Kossoy, E. Wachtel, H. L. Tuller, A. I. Frenkel, and I. Lubomirsky, Adv. Mater. 24, 5857 (2012) 0935-9648 10.1002/adma.201202270.
Q. Li, T. Lu, J. Schiemer, N. Laanait, N. Balke, Z. Zhang, Y. Ren, M. A. Carpenter, H. Wen, J. Li, S. V. Kalinin, and Y. Liu, Phys. Rev. Materials 2, 041403 (R) (2018) 2475-9953 10.1103/PhysRevMaterials.2.041403.
J. Yuan, A. Luna, W. Neri, C. Zakri, A. Colin, and P. Poulin, ACS Nano 12, 1688 (2018) 1936-0851 10.1021/acsnano.7b08332.
J. von Cieminski and H. Beige, J. Phys. D 24, 1182 (1991) 0022-3727 10.1088/0022-3727/24/7/024.
S. Kawamura, T. Imai, and T. Sakamoto, J. Appl. Phys. 122, 114101 (2017) 0021-8979 10.1063/1.4985785.
F. Li, L. Jin, Z. Xu, and S. Zhang, Appl. Phys. Rev. 1, 011103 (2014) 1931-9401 10.1063/1.4861260.
H. Uwe and T. Sakudo, J. Phys. Soc. Jpn. 38, 183 (1975) 0031-9015 10.1143/JPSJ.38.183.
B. Strukov and A. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, New York, 1998).
V. A. Isupov and E. P. Smirnova, Ferroelectrics 90, 141 (1989) 0015-0193 10.1080/00150198908211282.
Z. Ujma, J. Handerek, and M. Pisarski, Ferroelectrics 64, 237 (1985) 0015-0193 10.1080/00150198508012777.
L. A. Shuvalov, Modern Crystallography IV Physical: Properties of Crystals (Springer, New York, 1988).
A. Devonshire, Adv. Phys. 3, 85 (1954) 0001-8732 10.1080/00018735400101173.
D. S. P. Tanner, E. Bousquet, and P.-E. Janolin, Small 17, 2103419 (2021) 1613-6810 10.1002/smll.202103419.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.106.L060102 for thermodynamical equivalence with expressions of direct electrostriction.
F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon, New York, 1962).
H. Bouafia, S. Hiadsi, B. Abidri, A. Akriche, L. Ghalouci, and B. Sahli, Comput. Mater. Sci. 75, 1 (2013) 0927-0256 10.1016/j.commatsci.2013.03.030.
G. E. Jellison, Jr., I. Paulauskas, L. A. Boatner, and D. J. Singh, Phys. Rev. B 74, 155130 (2006) 1098-0121 10.1103/PhysRevB.74.155130.
A. Benrekia, N. Benkhettou, A. Nassour, M. Driz, M. Sahnoun, and S. Lebègue, Phys. B: Condens. Matter 407, 2632 (2012) 0921-4526 10.1016/j.physb.2012.04.013.
P. Vousden, Acta Crystallogr. 4, 373 (1951) 0365-110X 10.1107/S0365110X5100115X.
Handbook of Optical Materials, 1st ed., edited by M. J. Weber (CRC Press, Boca Raton, 2002).
S. Cabuk, Phys. Status Solidi B 247, 93 (2010) 0370-1972 10.1002/pssb.200945294.
P. A. Fleury and J. M. Worlock, Phys. Rev. 174, 613 (1968) 0031-899X 10.1103/PhysRev.174.613.
H. Vogt and H. Uwe, Phys. Rev. B 29, 1030 (1984) 0163-1829 10.1103/PhysRevB.29.1030.
M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, Comput. Phys. Commun. 226, 39 (2018) 0010-4655 10.1016/j.cpc.2018.01.012.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008) 0031-9007 10.1103/PhysRevLett.100.136406.
D. F. Nelson and M. Lax, Phys. Rev. Lett. 31, 1230 (1973) 0031-9007 10.1103/PhysRevLett.31.1230.2.
M. Tyunina, J. Narkilahti, M. Plekh, R. Oja, R. M. Nieminen, A. Dejneka, and V. Trepakov, Phys. Rev. Lett. 104, 227601 (2010) 0031-9007 10.1103/PhysRevLett.104.227601.
A. Tagantsev, Appl. Phys. Lett. 76, 1182 (2000) 0003-6951 10.1063/1.125976.
K. Ueno, S. Nakamura, H. Shimotani, H. T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nat. Nanotechnol. 6, 408 (2011) 1748-3387 10.1038/nnano.2011.78.
C. Liu, X. Yan, D. Jin, Y. Ma, H.-W. Hsiao, Y. Lin, T. M. Bretz-Sullivan, X. Zhou, J. Pearson, B. Fisher, J. S. Jiang, W. Han, J.-M. Zuo, J. Wen, D. D. Fong, J. Sun, H. Zhou, and A. Bhattacharya, Science 371, 716 (2021) 0036-8075 10.1126/science.aba5511.
R. M. Geilhufe, V. Juričić, S. Bonetti, J.-X. Zhu, and A. V. Balatsky, Phys. Rev. Research 3, L022011 (2021) 2643-1564 10.1103/PhysRevResearch.3.L022011.
D. S. P. Tanner, M. A. Caro, S. Schulz, and E. P. O'Reilly, Phys. Rev. Materials 3, 013604 (2019) 2475-9953 10.1103/PhysRevMaterials.3.013604.
M. Algueró, B. Cheng, F. Guiu, M. Reece, M. Poole, and N. Alford, J. Eur. Ceram. Soc. 21, 1437 (2001) 0955-2219 10.1016/S0955-2219(01)00036-X.
N. Yavo, A. D. Smith, O. Yeheskel, S. Cohen, R. Korobko, E. Wachtel, P. R. Slater, and I. Lubomirsky, Adv. Funct. Mater. 26, 1138 (2016) 1616301X 10.1002/adfm.201503942.
N. Yavo, O. Yeheskel, E. Wachtel, D. Ehre, A. I. Frenkel, and I. Lubomirsky, Acta Mater. 144, 411 (2018) 1359-6454 10.1016/j.actamat.2017.10.056.
J. Yu and P.-E. Janolin, Giant electrostriction, J. Appl. Phys. 131, 170701 (2022) 10.1063/5.0079510.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.106.L060102 for derivation.
Z. Jiang, R. Zhang, F. Li, L. Jin, N. Zhang, D. Wang, and C.-L. Jia, AIP Adv. 6, 065122 (2016) 2158-3226 10.1063/1.4954886.
C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fête, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, P. Ghosez, and J.-M. Triscone, Phys. Rev. Lett. 107, 056102 (2011) 0031-9007 10.1103/PhysRevLett.107.056102.
J. J. Wang, F. Y. Meng, X. Q. Ma, M. X. Xu, and L. Q. Chen, J. Appl. Phys. 108, 034107 (2010) 0021-8979 10.1063/1.3462441.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.