Artificial intelligence; EANM; Nuclear medicine; Radiology, Nuclear Medicine and imaging; General Medicine
Abstract :
[en] Artificial intelligence (AI) is coming into the field of nuclear medicine, and it is likely here to stay. As a society, EANM can and must play a central role in the use of AI in nuclear medicine. In this position paper, the EANM explains the preconditions for the implementation of AI in NM and takes position.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Hustinx, Roland ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
Pruim, Jan ; Medical Imaging Center, Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. j.pruim@umcg.nl
Lassmann, Michael; Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
Visvikis, Dimitris; LaTIM, INSERM, UMR 1101, University of Brest, Brest, France
Language :
English
Title :
An EANM position paper on the application of artificial intelligence in nuclear medicine.
Publication date :
25 August 2022
Journal title :
European Journal of Nuclear Medicine and Molecular Imaging
Visvikis D, Lambin P, Mauridsen KB, Hustinx R, Lassmann M, Rischpler C, et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. Eur J Nucl Med Mol I. 2022. https://doi.org/10.1007/s00259-022-05891-w.
Kotter E, Ranschaert E. Challenges and solutions for introducing artificial intelligence (AI) in daily clinical workflow. Eur Radiol. 2021;31:5–7. DOI: 10.1007/s00330-020-07148-2
Lexa FJ, Jha S. Artificial intelligence for image interpretation: counterpoint—the radiologist’s incremental foe. Am J Roentgenol. 2021;217:558–9. DOI: 10.2214/AJR.21.25484
Huisman M, Ranschaert E, Parker W, Mastrodicasa D, Koci M, de Santos DP, et al. An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude. Eur Radiol. 2021;31:7058–66. DOI: 10.1007/s00330-021-07781-5
Ridley EL. ECR: AI adoption on the rise in the Netherlands [Internet]. 2022 [cited 2022 Jul 13]. Available from: https://www.auntminnieeurope.com/index.aspx?sec=rca&sub=ECR_2022&pag=dis&ItemID=622799.
Hustinx R. Physician centred imaging interpretation is dying out — why should I be a nuclear medicine physician? Eur J Nucl Med Mol I. 2019;46:2708–14. DOI: 10.1007/s00259-019-04371-y
Zhou Z, Firestone C. Humans can decipher adversarial images. Nat Commun. 2019;10:1334–42. DOI: 10.1038/s41467-019-08931-6
Barucci A, Neri E. Adversarial radiomics: the rising of potential risks in medical imaging from adversarial learning. Eur J Nucl Med Mol I. 2020;47:2941–3. DOI: 10.1007/s00259-020-04879-8
European Commission. Regulatory framework proposal on artificial intelligence. Available from: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai.
Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology. 2019;294:445–52. DOI: 10.1148/radiol.2019191114
Pinochet P, Eude F, Becker S, Shah V, Sibille L, Toledano MN, et al. Evaluation of an automatic classification algorithm using convolutional neural networks in oncological positron emission tomography. Frontiers Medicine. 2021;8:628179. DOI: 10.3389/fmed.2021.628179
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11. DOI: 10.1038/s41592-020-01008-z
Iantsen A, Ferreira M, Lucia F, Jaouen V, Reinhold C, Bonaffini P, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. Eur J Nucl Med Mol I. 2021:1–13.
Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018;44:177–95. DOI: 10.1016/j.media.2017.12.007
Pianykh OS, Langs G, Dewey M, Enzmann DR, Herold CJ, Schoenberg SO, et al. Continuous learning AI in radiology: implementation principles and early applications. Radiology. 2020;297:6–14. DOI: 10.1148/radiol.2020200038
European Commission. Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts. 2021. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206.
Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol I. 2019;46:2656–72. DOI: 10.1007/s00259-019-04372-x
Slart RHJA, Williams MC, Juarez-Orozco LE, Rischpler C, Dweck MR, Glaudemans AWJM, et al. Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. Eur J Nucl Med Mol I. 2021;48:1399–413. DOI: 10.1007/s00259-021-05341-z
Erickson BJ, Kitamura F. Magician’s Corner: 9. Performance metrics for machine learning models. Radiology Artif Intell. 2021;3:e200126. DOI: 10.1148/ryai.2021200126
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295:328–38. DOI: 10.1148/radiol.2020191145
Xing L, Goetsch S, Cai J. Artificial intelligence should be part of medical physics graduate program curriculum. Med Phys. 2021;48:1457–60. DOI: 10.1002/mp.14587
Currie G, Hawk KE, Rohren EM. Ethical principles for the application of artificial intelligence (AI) in nuclear medicine. Eur J Nucl Med Mol Imaging. 2020;47:748–52. DOI: 10.1007/s00259-020-04678-1
Nishikawa RM, Schmidt RA, Linver MN, Edwards AV, Papaioannou J, Stull MA. Clinically missed cancer: how effectively can radiologists use computer-aided detection? Am J Roentgenol. 2012;198:708–16. DOI: 10.2214/AJR.11.6423