Arc roots; Arclogite; Cumulates; Residues; Restites; Thermobarometry; U-Pb zircon geochemistry; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Arclogites, or clinopyroxene-, garnet-, amphibole-, and Fe[sbnd]Ti oxide-bearing cumulates and restites (collectively representing residues) to andesitic continental arc magmas, are reviewed here and in a companion paper (Ducea et al., 2020). Experimental petrology and petrologic observations suggest that these eclogite facies rocks form magmatically in deep crustal hot zones beneath arcs with crustal thicknesses exceeding 35–40 km. Volcanic and plutonic products of thinner arcs may instead be entirely extracted from amphibolite to granulite facies and garnet-free pyroxenite residues. Arclogites are perhaps best known as xenoliths, with notable examples from young (Sierra Nevada and Central Arizona) and modern (Colombia) sub-arc environments. We suspect that arclogite occurs more commonly than currently recognized in the xenolith record from orogenic and cratonic domains. Arclogite is also found as discrete intervals in the deepest exposures of the Kohistan arc and as small volume inclusions in tectonically exposed peridotite massifs (e.g., Beni Bousera, Morocco). Geochemically, these rocks are low silica (SiO2 < 50%) assemblages with low Nb/Ta and Sr/Y ratios and enrichments in heavy REEs such that they represent the complement to the andesitic-dacitic liquids that make up the surface volcanics and batholiths of most arcs. Virtually all rock-forming minerals in arclogites are of similar or greater density than the underlying mantle, making them ideal candidates for foundering. Arclogites are formed in the lowermost crust of arcs at 35–70 km depth and record high temperatures (~800–1000 °C) at the time of formation which then cool and metamorphose at ~650–750 °C if they remain attached to the crust for an extended period of time. Ages of these rocks are obtainable by Sm[sbnd]Nd and Lu[sbnd]Hf garnet isochron geochronology as well as titanite or rutile U[sbnd]Pb geochronology, although these ages can be reset through long-term storage in hot lower crustal environments. Recent discovery of zircon accessory minerals in arclogites makes these rocks datable with greater precision and greater chance of preserving crystallization ages by U[sbnd]Pb chronology.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ducea, Mihai N.; University of Arizona, Tucson, United States ; Faculty of Geology and Geophysics, University of Bucharest, Bucharest, Romania
Chapman, Alan D.; Geology Department, Macalester College, St. Paul, United States
Bowman, Emilie; University of Arizona, Tucson, United States
Triantafyllou, Antoine ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique ; Laboratoire de géologie de Lyon, Université de Lyon, Villeurbanne, France
Language :
English
Title :
Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Funding text :
MND: I acknowledge support from US National Science Foundation grant EAR 1725002 and the Romanian Executive Agency for Higher Education , Research, Development and Innovation Funding project PN-III-P4-ID-PCCF-2016-0014 . I want to thank my students and postdocs Steven Kidder, Peter Luffi, Alan Chapman, Jay Chapman, Antoine Tryantafyllou, Robinson Cecil, Costi Balica, and Emilie Bowman for their contributions to arclogite science (direct or indirect), which are reflected in this paper. I thank my PhD adviser Jason Saleeby and my committee members Peter Wyllie, Hugh Taylor Jr. and Ed Stolper for guiding me in my early studies. I am forever indebted for the gracious reviews I received from Calvin Miller and Robert Kay on my early manuscripts: they were not just constructive they were career defining. I have learned a lot on the subject of this paper from some extraordinary peers that I am lucky to have within reach of an email or in the building: Cin-Ty Lee, Peter DeCelles, Claire Currie, George Bergantz, and George Zandt. ADC: I would like to thank my PhD advisor Jason Saleeby (yes, MND and I share the same academic parentage), who brought arclogites to my attention, and my coauthor for alerting me to the existence and significance of central Arizona arclogite xenolith localities. Support from NSF grant EAR-1524768 allowed myself and my amazing students Ojashvi Rautela, Jessie Shields, and Michael Murphy to study central Arizona arclogite nodules in more detail, for which I am grateful. This effort benefitted from field and laboratory assistance by D. Abboud, B. Hunter, and J. Thole and discussions with E. Chin, S. Esperança, C.-T. Lee, D. Smith. Formal reviews by E. Chin, W LeRoux and input from editor Arturo Gomez Tuena greatly improved the manuscript.MND: I acknowledge support from US National Science Foundation grant EAR 1725002 and the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding project PN-III-P4-ID-PCCF-2016-0014. I want to thank my students and postdocs Steven Kidder, Peter Luffi, Alan Chapman, Jay Chapman, Antoine Tryantafyllou, Robinson Cecil, Costi Balica, and Emilie Bowman for their contributions to arclogite science (direct or indirect), which are reflected in this paper. I thank my PhD adviser Jason Saleeby and my committee members Peter Wyllie, Hugh Taylor Jr. and Ed Stolper for guiding me in my early studies. I am forever indebted for the gracious reviews I received from Calvin Miller and Robert Kay on my early manuscripts: they were not just constructive they were career defining. I have learned a lot on the subject of this paper from some extraordinary peers that I am lucky to have within reach of an email or in the building: Cin-Ty Lee, Peter DeCelles, Claire Currie, George Bergantz, and George Zandt. ADC: I would like to thank my PhD advisor Jason Saleeby (yes, MND and I share the same academic parentage), who brought arclogites to my attention, and my coauthor for alerting me to the existence and significance of central Arizona arclogite xenolith localities. Support from NSF grant EAR-1524768 allowed myself and my amazing students Ojashvi Rautela, Jessie Shields, and Michael Murphy to study central Arizona arclogite nodules in more detail, for which I am grateful. This effort benefitted from field and laboratory assistance by D. Abboud, B. Hunter, and J. Thole and discussions with E. Chin, S. Esperan?a, C.-T. Lee, D. Smith. Formal reviews by E. Chin, W LeRoux and input from editor Arturo Gomez Tuena greatly improved the manuscript.
Abers, G., Hacker, B., A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element compositions of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst. 17 (2016), 616–624.
Anczkiewicz, R., Vance, D., Isotopic constraints on the evolution of metamorphic conditions in the Jijal Patan complex and Kamila Belt of the Kohistan Arc, Pakistan Himalaya. Khan, M.A., Treloar, P.J., Searle, M.P., Jan, M.Q., (eds.) Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. Geol. Soc. Lond., Spec. Publ., 170, 2000, 321–331.
Anderson, D.L., Large igneous provinces, delamination, and fertile mantle: Elements, v. 1. 2005, 271–275, 10.2113/gselements.1.5.271.
Annen, C., Blundy, J.D., Sparks, R.S.J., The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47 (2006), 505–539.
Arculus, R.J., Smith, D., Eclogite, pyroxenite, and amphibolite inclusions in the Sullivan Buttes latite. Chino Valley, Yavapai County, Arizona, the Mantle Sample: Inclusions in Kimberlites and Other Volcanics, 1979, American Geophysical Union, Washington, DC, 309–317.
Arndt, N.T., Goldstein, S.L., An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161 (1989), 201–212.
Assumpcao, M., Feng, M., Tassara, A., Julia, J., Models of crustal thickness for South America from seismic refraction, receiver functions, and surface wave tomography. Tectonophysics 609 (2013), 82–96.
Aulbach, S., Arndt, N., Eclogites as palaeodynamic archives: evidence for warm (not hot) and depleted (but heterogeneous) Archaean ambient mantle. Earth Planet. Sci. Lett. 505 (2019), 162–172.
Balica, C., Ducea, M.N., Gehrels, G.E., Kirk, J., Roban, R.D., Luffi, P., Chapman, J.B., Triantafyllou, A., Guo, J., Stoica, A.M., Ruiz, J., Balintoni, I., Profeta, L., Hoffman, D., Petrescu, L., A zircon petrochronologic view on granitoids and continental evolution. Earth Planet. Sci. Lett., 531, 2020, 10.1016/j.epsl.2019.116005 paper 11605.
Banno, S., Classification of eclogites in terms of physical conditions of their origin. Phys. Earth Planet. Inter. 3 (1970), 405–421.
Basaltic Volcanism Study Project, Basaltic Volcanism in the Terrestrial Planets. 1981, Pergamon, New York.
Bloch, E., Ibanez-Mehia, M., Murray, K., Vervoort, J., Muntener, O., Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone. Earth Planet. Sci. Lett. 476 (2017), 47–58.
Bottinga, Y., Weill, D.F., Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am. J. Sci. 269 (1970), 169–182.
Burg, J.-P., Bodinier, J.-L., Chaudhry, S., Hussain, S., Dawood, H., Infra-arc mantle-crust transition and intra-arc mantle dia- pirs in the Kohistan complex (Pakistani Himalaya): petro-structural evidence. Terra Nova 10 (1998), 74–80.
Carroll, M.R., Wyllie, P.J., The system tonalite-H2O at 15 kbar and the genesis of calc-alkaline magmas. Am. Mineral. 75:3–4 (1990), 345–357.
Chapman, A.D., Ducea, M.N., Kidder, S., Petrescu, L., Geochemical constraints on the petrogenesis of the Salinian arc, Central California: Implications for the origin of intermediate magmas. Lithos 200 (2014), 126–141 v.
Chapman, J.B., Ducea, M.N., DeCelles, P.G., Profeta, L., Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the north American Cordillera. Geology 43 (2015), 919–922.
Chapman, A.D., Ducea, M.N., McQuarrie, N., Coble, M., Petrescu, L., Hoffman, D., Constraints on plateau architecture and assembly from deep crustal xenoliths, northern Altiplano (SE Peru). Geol. Soc. Am. Bull. 127 (2015), 1777–1797.
Chapman, A.D., Riggs, N., Ducea, M.N., Saleeby, J.B., Rautela, O., Shields, J., Tectonic development of the Colorado Plateau transition Zone, Central Arizona: Insights from lower lithosphere xenoliths and volcanic host rocks. Pearthree, P.A., (eds.) Geologic Excursions in Southwestern North America: Geological Society of America Field Guide, 55, 2019, 209–235, 10.1130/2019.0055(09).
Chapman, A.D., Rautela, O., Shields, J.E., Ducea, M.N., Saleeby, J.B., Fate of Continental lower Crust and Upper Mantle during Shallow-Angle Subduction: the Laramide example. GSA Today, 30, 2020, 10.1130/GSATG412A.1 v.
Chin, E., Lee, C.T., Luffi, P., Deep lithospheric thickening and refertilization beneath continental arcs: case study of the P, T and compositional evolution of peridotite xenoliths from the Sierra Nevada, California. J. Petrol. 53 (2012), 477–511.
Chin, E.J., Lee, C.-T.A., Tollstrup, D.L., Xie, L., Wimpenny, J.B., Yin, Q.-Z., On the origin of hot metasedimentary quartzites in the lower crust of continental arcs. Earth and Planetary Science Letters 361 (2013), 120–133.
Chin, E.J., Lee, C.-T.A., Barnes, J.D., Thickening, refertilization, and the deep lithosphere filter in continental arcs: Constraints from major and trace elements and oxygen isotopes. Earth Planet. Sci. Lett. 397 (2014), 184–200.
Chin, E.J., Lee, C.-T.A., Barnes, J.D., Thickening, refertilization, and the deep lithospheric filter in continental arcs: constraints from major and trace elements and oxygen isotopes. Earth Planet. Sci. Lett. 397 (2014), 184–200.
Chin, E.J., Lee, C.T.A., Blichert-Toft, J., Growth of upper plate lithosphere controls tempo of arc magmatism: Constraints from Al-diffusion kinetics and coupled Lu-Hf and Sm-Nd chronology. Geochemical Perspectives Letters 1 (2015), 20–32.
Chin, E.J., Lee, C.T.A., Blichert-Toft, J., Growth of upper plate lithosphere controls tempo of arc magmatism: Constraints from Al-diffusion kinetics and coupled Lu-Hf and Sm-Nd chronology. Geochemical Perspectives Letters 1 (2015), 20–32.
Chmielowski, J., Zandt, G., Haberland, C., The central Andean Altiplano-Puna magma body. Geophys. Res. Lett. 26 (1999), 783–786.
Coleman, R.G., Lee, D.E., Beatty, L.B., Brannock, W.W., Eclogites and eclogites: their differences and similarities. Geol. Soc. Am. Bull. 76 (1965), 483–508.
Conrad, W.K., Kay, R.W., Ultramafic and Mafic Inclusions from Adak Island: Crystallization history, and Implications for the Nature of primary Magmas and Crustal Evolution in the Aleutian Arc. J. Petrol. 25 (1984), 88–125.
Currie, C., Ducea, M.N., DeCelles, P.G., Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. DeCelles, P.G., Ducea, M.N., Carrapa, B., Kapp, P., (eds.) Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile, 2015 Geological Society of America Memoir, 212, p. 1–22.
Davidson, J.P., Arculus, R.J., The significance of Phanerozoic arc magmatism in generating continental crust. Evolution and Differentiation of the Continental Crust, Ed. M Brown, T Rushmer, 2006, Cambridge University Press, Cambridge, 135–172.
Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., Amphibole “sponge” in arc crust?. Geology 35 (2007), 787–790.
de Capitani, C., Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/ Domino software. Am. Mineral. 95 (2010), 1006–1016.
DeBari, S.M., Kay, S.M., Kay, R.W., Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian islands, Alaska: deformed igneous cumulates from the Moho of an island arc. J. Geol. 95 (1987), 329–341.
Delph, J.R., Ward, K.M., Zandt, G., Ducea, M.N., Beck, S.L., Imaging a magma plumbing system from MASH zone to magma reservoir. Earth Planet. Sci. Lett. 457 (2017), 313–324.
DePaolo, D.J., A Neodymium and strontium study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges. J. Geophys. Res. 86 (1981), 10470–10488.
Depine, G.V., Andronicos, C.L., Phipps-Morgan, J., Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452 (2008), 80–83.
Dhuime, B., Bosch, D., Garrido, C.J., Bodinier, J.L., Bruguier, O., et al. Geochemical architecture of the lower- to middle-crustal section of a paleo-island arc (Kohistan complex, Jijal-Kamila area, northern Pakistan): implications for the evolution of an oceanic subduction zone. J. Petrol. 50 (2009), 531–569.
Dhuime, B., Wuestefeld, A., Hawkesworth, C.J., Emergence of modernconti-nental crust about 3 billion years ago. Nat. Geosci. 8 (2015), 552–554.
Dodge, F.C.W., Calk, L.C., Kistler, R.W., Lower crustal xenoliths, Chinese Peak lava flow, Central Sierra Nevada. J. Petrol. 27 (1986), 1277–1304.
Dodge, F.C.W., Lockwood, J.P., Calk, L.C., Fragments of the mantle and crust beneath the Sierra Nevada batholith: Xenoliths in a volcanic pipe near Big Creek, California. Geol. Soc. Am. Bull. 100 (1988), 938–947.
Domenick, M.A., Kistler, R.W., Dodge, F.C.W., Tatsumoto, M., Nd and Sr study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis. Geol. Soc. Am. Bull. 94 (1983), 713–719.
Ducea, M.N., The California Arc: thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11 (2001), 4–10.
Ducea, M.N., Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective. J. Geophys. Res. Solid Earth, 107, 2002, 10.1029/2001JB000643.
Ducea, M.N., Chapman, A.D., Sub-magmatic arc underplating by trench and forearc materials in shallow subduction systems; A geologic perspective and implications. Earth Sci. Rev. 185 (2018), 763–779, 10.1016/j.earscirev.2018.08.001.
Ducea, M., Saleeby, J., Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada; evidence from xenolith thermobarometry. J. Geophys. Res. 101 (1996), 8029–8044 v.
Ducea, M., Saleeby, J., A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int. Geol. Rev. 40 (1998), 78–93.
Ducea, M.N., Saleeby, J.B., The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib. Mineral. Petrol., 133, 1998 169–185.
Ducea, M.N., Kidder, S., Zandt, G., Arc composition at mid-crustal depths: Insights from the Coast Ridge Belt, Santa Lucia Mountains. California. Geophysical Res. Lett., 30, 2003, 10.1029/2002GL016297.
Ducea, M.N., Seclaman, A.C., Murray, K.E., Jianu, D., Schoenbohm, L.M., Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes. Geology 41 (2013), 915–918.
Ducea, M.N., Saleeby, J.B., Bergantz, G., The architecture, chemistry, and evolution of continental magmatic arcs. Annu. Rev. Earth Planet. Sci. 43 (2015), 299–331.
Ducea, M.N., Bowman, E., Chapman, A.D., Balica, C., Arclogites and their role in continental evolution; Part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle, companion paper submitted to this one. 2020.
Dufek, J., Bergantz, G.W., Lower crustal magma genesis and preservation: A stochastic framework for the evaluation of basalt-crust interaction. J. Petrol. 46 (2005), 2167–2195.
Dumitru, T.A., Subnormal Cenozoic geothermal gradients in the extinct Sierra Nevada magmatic arc: Consequences of Laramide and post-Laramide shallow angle subduction. J. Geophys. Res. 95 (1990), 4925–4941.
El Atrassi, F., Brunet, F., Chazot, G., Bouybaouène, M., Chopin, C., Metamorphic and magmatic overprint of garnet pyroxenites from the Beni Bousera massif (northern Morocco): Petrography, mineral chemistry and thermobarometry. Lithos 179 (2013), 231–248.
Elkins-Tanton, L.T., Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabili- ties. J. Geophys. Res., 112, 2007, 10.1029/2005JB004072 B03405.
Ellis, D.J., Green, E.H., An experimental study of the effect of Ca upon garnet-clinopyroxene Fe[sbnd]Mg exchange equilibria. Contrib. Mineral. Petrol. 66 (1979), 13–22.
Erdman, M.E., Lee, C.-T.A., Levander, A., Jiang, H., Role of arc magmatism and lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado Plateau: a case study of pyroxenitic lower crust from central Arizona, USA. Earth Planet. Sci. Lett. 439 (2016), 48–57.
Ernst, W.G., Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res. 15 (2009), 243–253.
Eskola, P., The mineral facies of rocks. Norsk Geologisk Tidsskrift VI, 1920, 143–194.
Esperanca, S., Carlson, R.W., Shirey, S.B., Lower crustal evolution under central Arizona: Sr, Nd, and Pb isotopic and geochemical evidence from mafic xenoliths of Camp Creek. Earth Planet. Sci. Lett. 90 (1988), 26–40.
Esperanca, S., Carlson, R.W., Shirey, S.B., Smith, D., Dating crust-mantle separation: Re[sbnd]Os isotopic study of mafic xenoliths from central Arizona. Geology 25 (1997), 651–654.
Farmer, G.L., Glazner, A.F., Manley, C.R., Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California?. Geol. Soc. Am. Bull. 114 (2002), 754–768.
Fliedner, M., Ruppert, S., 3-dimensional crustal structure of the Southern Sierra Nevada from seismic fan profiles and gravity modelling. Geology 24 (1996), 367–370.
Gao, S., Rudnick, R., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ayers, J., Wang, X.-C., Wang, Q.-H., Recycling lower continental crust in the North China craton. Nature, 432, 2004 892–897.
Garrido, C.J., Bodinier, J.-L., Burg, J.-P., Zeilinger, G., Hussain, S., Dawood, H., Chaudhry, M.N., Gervilla, F., Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan Paleo- arc Complex (Northern Pakistan): Implications for intra-crustal differentiation of island arcs and generation of continental crust. J. Petrol. 47 (2006), 1873–1914.
Ghiorso, M.S., Sack, R.O., Chemical Mass Transfer in Magmatic Processes. IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contrib. Mineral. Petrol. 119 (1995), 197–212.
Gill, J., Orogenic andesites and plate tectonics. 1981, Springer-Verlag, Berlin.
Godard, G., Eclogites and their geodynamic interpretation: A history. J. Geodyn. 32 (2001), 163–203.
Gonzales Vidal, D., Obermann, A., Tassara, A., Bataille, K., Lupi, M., Crustal model of the Southern Central Andes derived from ambient Rayleigh wave tomography. Tectonophysics 744 (2018), 215–226.
Green, D.H., Ringwood, A.E., The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15 (1967), 103–190.
Green, D.H., Ringwood, A.E., An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. Cosmochim. Acta 31 (1967), 767–833.
Griffin, W.L., O'Reilly, S.Y., The lower crust in eastern Australia: Xenolith evidence, in The Nature of the Lower Continental Crust, edited by J. B. Dawson, et al. Spec. Publ. Geol. Soc. Am. 24 (1986), 363–374.
Griffin, W.L., O'Reilly, S.Y., Is the continental Moho the crust- mantle boundary?. Geology, 15, 1987 241–244.
Gysi, A.P., Jagoutz, O., Schmidt, M.W., Targuisti, K., Petrogenesis of pyroxenites and melt infiltrations in the ultramafic complex of Beni Bousera, northern Morocco. J. Petrol. 22 (2011), 1679–1735.
Harley, S.L., An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib. Mineral. Petrol. 86 (1984), 359–373.
Harley, S.L., Green, D.H., Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300 (1982), 697–701.
Hauy, R.J., Traite´ de mine´ ralogie. Seconde e´ dition, revue, corrige´ e et conside´ rablement augmente´ e par l'auteur. Bachelier et Huzard, Paris, 4 Vols+atlas (t. II, p. 456; t. IV, p. 548). 1822.
Herzberg, C.T., Fyfe, W.S., Carr, M.J., Density constraints on the formation of the continental Moho and crust. Contrib. Mineral. Petrol. 84 (1983), 1–5, 10.1007/BF01132324.
Hildreth, W., Moorbath, S., Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98 (1988), 455–489.
Hirschmann, M.M., Stolper, E.M., A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124 (1996), 185–208, 10.1007/s004100050184.
Holland, T.H., On the origin and growth of garnets and of their micropegmatitic intergrowths in pyroxenic rocks. Records of the geological Survey of India 29. 20–30 + 1 pl, 1896.
Jacob, D.E., Nature and origin of eclogite xenoliths from kimberlites. Lithos 77 (2004), 195–316.
Jagoutz, O., Behn, M.D., Foundering of lower arc crust as an explanation for the origin of the continental Moho. Nature 504 (2013), 131–134.
Jagoutz, O., Kelemen, P.B., Role of arc processes in the formation of continental crust. Annu. Rev. Earth Planet. Sci. 43 (2015), 363–404.
Jagoutz, O.E., Schmidt, M.W., The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem. Geol. 298–299 (2012), 79–96.
Jagoutz, O., Schmidt, M.W., The composition of the foundered complement to the continental crust and are-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371–372 (2013), 177–190.
Jan, M.Q., Howie, R.A., The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal Complex, Kohistan, NW Pakistan. J. Petrol. 22 (1981), 85–126.
Jones, C.H., Reeg, H., Zandt, G., Gilbert, H., Owens, T.J., Stachnik, J., P-wave tomography of potential convective downwellings and their source regions, Sierra Nevada, California. Geosphere, 10(3), 2014.
Jull, M., Kelemen, P., On the conditions for lower crustal convective instability. J. Geophys. Res. 106 (2001), 6423–6446.
Kara, J., Väisänen, M., Heinonen, J.S., Lahaye, Y., O'Brien, H., Huhma, H., Tracing arclogites in the Paleoproterozoic Era-A shift from 1.88 Ga calc-alkaline to 1.86 Ga high-Nb and adakite-like magmatism in central Fennoscandian Shield. Lithos, 105, 2020, 663.
Kay, S.M., Kay, R.W., Role of crystal cumulates and the oceanic crust in the formation of the Aleutian arc. Geology 13 (1985), 461–464.
Kidder, S., Ducea, M., Gehrels, G., Patchett, P.J., Vervoort, J., Tectonic and magmatic development of the Salinian Coast Ridge belt, California. Tectonics, 22, 2003, 10.1029/2002TC001409.
Kistler, R.W., Two different types of lithosphere in the Sierra Nevada, California. Geol. Soc. Am. Mem. 174 (1990), 271–282.
Klemperer, S., Hauge, T.A., Hauser, E.C., Oliver, J.E., Potter, C.J., The Moho in the northern Basin and Range along the COCORP 400N seismic reflection transect. Geol. Soc. Am. Bull. 97 (1986), 603–618.
Laske, G., Masters, G., Ma, Z., Pasyanos, M., Update on CRUST1.0 – a 1-degree global model of Earth's crust. Geophys. Res. Abstr. EGU2013-2658, 2013.
Lee, C.-T.A., Physics and chemistry of deep continental crust recycling. Holland, H., Turekian, K., (eds.) Treatise of Geochemistry, 2nd ed, 2014, Elsevier, 423–456.
Lee, C.-T.A., Anderson, D., Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Sci. Bull., 2015, 10.1007/s11434-015-0828-6.
Lee, C.-T., Yin, Q.-Z., Rudnick, R.L., Chesley, J.T., Jacobsen, S.B., Os isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada. California, Science 289 (2000), 1912–1916.
Lee, C.T., Yin, Q.Z., Rudnick, R.L., Jacobsen, S.B., Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature 411 (2001), 69–73.
Lee, C-T, Rudnick, R L, and Brimhall, G. H., Jr., 2001b, Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology, Geochemistry Geophysics Geosystems 2, 2001GC000152.
Lee, C.-T., Cheng, X., Horodyskyj, The development and refinement of continental arcs by primary basalt magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib. Mineral. Petrol., 151, 2006 222–242.
Mamani, M., Wörner, G., Sempere, T., Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time. Geol. Soc. Am. Bull. 122 (2010), 162–182.
McInnes, B.I.A., Gregoire, M., Binns, R.A., Hannington, M.D., Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet. Sci. Lett. 188 (2001), 169–183.
Meissner, R., The Continental Crust: A Geophysical Approach. 1986, Academic, San Diego, Calif.
Mukhopadhyay, B., Petrology and geochemistry of mafic and ultramafic xenoliths from the Sierra Nevada batholith, Part 1, PhD dissertation, Univ. Texas Dallas, 215 p. 1989.
Mukhopadyay, B., Manton, W.I., Upper mantle fragments from beneath the Sierra Nevada batholith: Partial fusion, fractional crystallization and metasomatism in a subduction-enriched ancient lithosphere. J. Petrol. 35 (1994), 1418–1450.
Murphy, M., Chapman, A.D., Rooting around beneath an arc: Zircon U[sbnd]Pb geochronologic and Hf isotopic constraints on the evolution of the base of the Sierra Nevada batholith. Abstracts with programs - Geological Society of America, 50(6), 2018.
Nakamura, D., A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. J. Metamorph. Geol. 27 (2009), 495–508, 10.1111/j.1525-1314.2009.00828.x.
Newton, R.C., Perkins, D. III, Thermodynamic calibra. Tion of geobarometer based on the assemblages garnet· plagioclase-orthopyroxene (cpx)-quartz. Am. Mineral. 67 (1982), 203–222.
Obata, M., The Ronda peridotite: garnet-, spinel-, and plagioclase-lherzolite facies and the P-T trajectories of a high- temperature mantle intrusion. J. Petrol. 21 (1980), 533–572.
Otamendi, J.E., Ducea, M.N., Tibaldi, A.M., Bergantz, G.W., de la Rosa, J.D., Vujovich, G.I., Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc. Argentina. J. Petrol. 50 (2009), 841–873.
Otamendi, J.E., Ducea, M.N., Bergantz, G.W., Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. J. Petrol. 53 (2012), 761–800.
Paterson, S.R., Farris, D.W., Downward host rock transport and the formation of rimmonoclines during the emplacement of Cordilleran batholiths. Transactions of theRoyal Society of Edinburgh: Earth Sciences 97 (n. 4), 397–413 (Special Issue Plutons and Batholiths (The Wallace Pitcher Memorial Volume)). 2008.
Pearson, D.G., Davies, G.R., Nixon, P.H., Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. J. Petrol. 34 (1993), 125–172.
Perkins, D. III, Newton, R.C., Charnockite geobarometers based on coexisting garnet-plagioclasc-pyroxcnc-quartz. Nature 292 (1981), 144–146.
Petermann, M., Hirschmann, M., Partial melting experiments on a MORB- like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res., 108, 2003, 2125.
Philpotts, A., Ague, J., Principles of igneous and metamorphic petrology. 2009, Cambridge University Press.
Pickett, D.A., Saleeby, J.B., Thermobarometric constraints on the depth of exposure and conditions of plutonism and metamorphism at deep levels of the Sierra Nevada batholith, Tehachapi Mountains, California. J. Geophys. Res. 98 (1993), 609–629.
Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Gonzales, S.M.H., Kirsch, M., Petrescu, L., DeCelles, P.G., Quantifying crustal thickness over time in magmatic arcs. Sci. Rep., 5, 2015, 17,786, 10.1038/srep17786.
Rapp, R.P., Watson, E.B., Dehydration melting of metabasalt at 8–32 kbar; implications for continental growth and crust-mantle recycling. J. Petrol. 36 (1995), 891–931.
Rautela, O., Chapman, A.D., Shields, J.E., Ducea, M.N., Lee, C.-T., Jiang, H., Saleeby, J., In search for the missing arc root of the Southern California Batholith: P-T-t evolution of upper mantle xenoliths of the Colorado Plateau Transition Zone. Earth Planet. Sci. Lett., 547, 2020 116447.
Rodriguez-Vargas, A., Koester, E., Mallmann, G., Conceição, R., Kawashita, K., We- ber, M., Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: constraints from Sr and Nd isotopes. Lithos 82 (2005), 471–484.
Rudnick, R., Making continental crust. Nature 378 (1995), 571–578.
Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F., Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287 (2000), 278–281.
Rushmer, T., Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib. Mineral. Petrol. 107 (1991), 41–59.
Saleeby, J.B., Progress in tectonic and petrogenetic studies in an exposedcrosssection of young (~100 Ma) continental crust, southern Sierra Nevada, Califor-nia. Salisbury, M.H., (eds.) Exposed Cross Sections of the Continental Crust, 1990, D.Reidel Publishing, Dordrecht, 132–158.
Saleeby, J., Segmentation of the Laramide slab: evidence from the southern Sierra Nevada region. Geol. Soc. Am. Bull. 115 (2003), 655–668.
Saleeby, J.B., Ducea, M.N., Clemens-Knott, D., Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics, 22, 2003, 10.1029/2002TC001374.
Schmidt, M.W., Jagoutz, O., The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 18 (2017), 817–2854, 10.1002/2016GC006699.
Smith, D., Arculus, R.J., Manchester, J.E., Tyner, G.N., Garnet-pyroxene-amphibole xenoliths from Chino Valley, Arizona, and implications for continental lithosphere below the Moho. J. Geophys. Res. 99:B1 (1994), 683–696.
Sun, C., Liang, Y., A REE-in-garnet-clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chem. Geol., 393–394, 2015 79–92.
Tang, M., Lee, C.-T.A., Chen, K., Erdman, M., Costin, G., Jiang, H., Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nat. Commun., 10, 2019, 10.1038/s41467-018-08198-3.
Tassara, A., Swain, C., Hackney, R., Kirby, J., Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth Planet. Sci. Lett. 253 (2007), 17–36, 10.1016/j.epsl.2006.10.008.
Tatsumi, Y., Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochem. Geophys. Geosyst., 1, 2000, 1053.
Tatsumi, Y., The subduction factory: how it operates in the evolving Earth. GSA Today 15 (2005), 4–10.
Taylor, S.R., McLennan, S.M., The continental crust; Its compositional evolution. 1985, Blackwell Sci, Cambridge, Mass 312p.
Vielzeuf, D., Schmidt, M.W., Melting relations in hydrous systemsrevisited: Application to metapelites. metagraywackes and metabasalts,Contrib. Mineral. Petrol. 141 (2001), 251–267.
Walker, B.A. Jr., Bergantz, G.W., Otamendi, J.E., Ducea, M.N., Cristofolini, E.A., A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J. Petrol. 56 (2015), 1863–1896.
Ward, K.M., Delph, J.R., Zandt, G., Beck, S.L., Ducea, M.N., Magmatic evolution of a Cordilleran flare-up and its role in the creation of silicic crust. Sci. Rep., 7, 2017, 9047, 10.1038/s41598-017-09015-5.
Watson, E.B., Wark, D.A., Thomas, J.B., Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151 (2006), 413–433.
Weber, M., Tarney, J., Kempton, P., Kent, R., Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes. SW Colombia, Tectonophysics 345 (2002), 49–82.
Wendlandt, E., DePaolo, D.J., Baldridge, W.S., Thermal history of Colorado Plateau lithosphere from Sm[sbnd]Nd mineral geochronology on xenolith. Geol. Soc. Am. Bull. 108 (1996), 757–767.
Wernicke, B., Getty, S.R., Intracrustal subduction and gravity currents in the deep crust: Sm[sbnd]Nd, Ar[sbnd]Ar, and thermobarometric constraints from the Skagit Gneiss Complex, Washington. Geol. Soc. Am. Bull. 109 (1997), 1149–1166.
Wernicke, B., et al. Origin of high mountains on continents: The Southern Sierra Nevada. Science 271 (1996), 190–193.
Whitney, D.L., Origin of CO2-rich fluid inclusions in leucosomes from the Skagit migmatites, North Cascades, Washington, USA. J. Metamorph. Geol. 10 (1992), 715–725.
Wolf, M.B., Wyllie, P.J., Garnet growth during amphibolite anatexis: Implications for a garnetiferous restite. J. Geol. 101 (1993), 357–373.
Wolf, M.B., Wyllie, P.J., Dehydration-melting of amphibolite at 10 kbar; the effects of temperature and time. Contrib. Mineral. Petrol. 115 (1994), 369–383.
Yamamoto, H., Nakamura, E., Sm[sbnd]Nd dating of garnet granulites from the Kohistan Complex, northern Pakistan. J. Geol. Soc. Lond. 153 (1996), 965–969.
Yamamoto, H., Nakamura, E., Timing of magmatic and metamorphic events in the Jijal Complex of the Kohistan Arc deduced from Sm[sbnd]Nd dating of mafic granulites. Geol. Soc. Lond., Spec. Publ. 170 (2000), 313–319.
Yuan, X., Sobolev, S.V., Kind, R., Moho topography in the central Andes and its geodynamic implications. Earth Planet. Sci. Lett. 199 (2002), 389–402, 10.1016/S0012-821X(02)00589-7.
Zandt, G., Gilbert, H., Owens, T., Ducea, M., Saleeby, J., Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431 (2004), 41–46.
Zeilinger, G., Structural and geochronological study of the lowest Kohistan Complex, Indus Kohistan region in Pakistan, NW Himalaya. PhD thesis, 2002, ETH, Zurich.
Zindler, A., Hart, S., Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14 (1986), 493–571.